DICTIONARY LEARNING FOR THE SPARSE MODELLING OF ATRIAL FIBRILLATION IN ECG SIGNALS - Archive ouverte HAL
Communication Dans Un Congrès Année : 2009

DICTIONARY LEARNING FOR THE SPARSE MODELLING OF ATRIAL FIBRILLATION IN ECG SIGNALS

Résumé

We propose a new method for ventricular cancellation and atrial modelling in the ECG of patients suffering from atrial fibrillation. Our method is based on dictionary learning. It extends both the average beat subtraction and the sparse source separation approaches. Experiments on synthetic data show that this method can almost completely suppress the ventricular activity, but it generates some artifacts. Contrary to other ventricular cancellations methods, our approach also learns a model for the atrial activity.
Fichier principal
Vignette du fichier
atrial_dictionary_publisher_version.pdf (196.27 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00466973 , version 1 (25-03-2010)

Identifiants

Citer

Boris Mailhé, Rémi Gribonval, Frédéric Bimbot, Mathieu Lemay, Pierre Vandergheynst, et al.. DICTIONARY LEARNING FOR THE SPARSE MODELLING OF ATRIAL FIBRILLATION IN ECG SIGNALS. ICASSP 2009, Apr 2009, Taipei, Taiwan. pp.465 - 468, ⟨10.1109/ICASSP.2009.4959621⟩. ⟨hal-00466973⟩
475 Consultations
354 Téléchargements

Altmetric

Partager

More