A Hybrid Classifier for Handwritten Mathematical Expression Recognition
Résumé
In this paper we propose a hybrid symbol classifier within a global framework for online handwritten mathematical expression recognition. The proposed architecture aims at handling mathematical expression recognition as a simultaneous optimization of symbol segmentation, symbol recognition, and 2D structure recognition under the restriction of a mathematical expression grammar. To deal with the junk problem encountered when a segmentation graph approach is used, we consider a two level classifier. A symbol classifier cooperates with a second classifier specialized to accept or reject a segmentation hypothesis. The proposed system is trained with a set of synthetic online handwritten mathematical expressions. When tested on a set of real complex expressions, the system achieves promising results at both symbol and expression interpretation levels.