Asymptotic normality of randomly truncated stochastic algorithms - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2010

Asymptotic normality of randomly truncated stochastic algorithms

Jérôme Lelong

Résumé

We study the convergence rate of randomly truncated stochastic algorithms, which consist in the truncation of the standard Robbins-Monro procedure on an increasing sequence of compact sets. Such a truncation is often required in practice to ensure convergence when standard algorithms fail because the expected-value function grows too fast. In this work, we give a self contained proof of a central limit theorem for this algorithm under local assumptions on the expected-value function, which are fairly easy to check in practice.
Fichier principal
Vignette du fichier
truncated_sa_tcl.pdf (202.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00464380 , version 1 (16-03-2010)
hal-00464380 , version 2 (20-05-2011)

Identifiants

Citer

Jérôme Lelong. Asymptotic normality of randomly truncated stochastic algorithms. 2010. ⟨hal-00464380v1⟩
404 Consultations
184 Téléchargements

Altmetric

Partager

More