FUNCTIONAL SUPERVISED CLASSIFICATION WITH WAVELETS - Archive ouverte HAL
Article Dans Une Revue Annales de l'ISUP Année : 2008

FUNCTIONAL SUPERVISED CLASSIFICATION WITH WAVELETS

Résumé

Let X be a random variable taking values in a Hilbert space and let Y be a random label with values in {0, 1}. Given a collection of classification rules and a learning sample of independent copies of the pair (X, Y ), it is shown how to select optimally and consistently a classifier. As a general strategy, the learning sample observations are first expanded on a wavelet basis and the overall infinite dimension is reduced to a finite one via a suitable data-dependent thresholding. Then, a finite-dimensional classification rule is performed on the non-zero coefficients. Both the dimension and the classifier are automatically selected by data-splitting and empirical risk minimization. Applications of this technique to a signal discrimination problem involving speech recordings and simulated data are presented.
Fichier principal
Vignette du fichier
classifwave.pdf (354.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00459437 , version 1 (24-02-2010)
hal-00459437 , version 2 (06-04-2022)

Identifiants

  • HAL Id : hal-00459437 , version 1

Citer

Alain Berlinet, Gérard Biau, Laurent Rouviere. FUNCTIONAL SUPERVISED CLASSIFICATION WITH WAVELETS. Annales de l'ISUP, 2008, 52, pp.19. ⟨hal-00459437v1⟩
732 Consultations
507 Téléchargements

Partager

More