Fast construction of irreducible polynomials over finite fields
Résumé
We present a randomized algorithm that on input a finite field $K$ with $q$ elements and a positive integer $d$ outputs a degree $d$ irreducible polynomial in $K[x]$. The running time is $d^{1+o(1)} \times (\log q)^{5+o(1)}$ elementary operations. The $o(1)$ in $d^{1+o(1)}$ is a function of $d$ that tends to zero when $d$ tends to infinity. And the $o(1)$ in $(\log q)^{5+o(1)}$ is a function of $q$ that tends to zero when $q$ tends to infinity. In particular, the complexity is quasi-linear in the degree $d$.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...