Communication Dans Un Congrès Année : 2007

Blind unmixing of linear mixtures using a hierarchical Bayesian model. Application to spectroscopic signal analysis

Résumé

This paper addresses the problem of spectral unmixing when positivity and additivity constraints are imposed on the mixing coefficients. A hierarchical Bayesian model is introduced to satisfy these two constraints. A Gibbs sampler is then proposed to generate samples distributed according to the posterior distribution of the unknown parameters associated to this Bayesian model. Simulation results conducted with synthetic data illustrate the performance of the proposed algorithm. The accuracy of this approach is also illustrated by unmixing spectra resulting from a multicomponent chemical mixture analysis by infrared spectroscopy.
Fichier principal
Vignette du fichier
Dobigeon07ssp.pdf (170.25 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00455587 , version 1 (16-02-2010)

Identifiants

Citer

Nicolas Dobigeon, Jean-Yves Tourneret, Saïd Moussaoui. Blind unmixing of linear mixtures using a hierarchical Bayesian model. Application to spectroscopic signal analysis. IEEE Workshop on Statistical Signal Processing, Aug 2007, Madison, United States. pp.CDROM, ⟨10.1109/SSP.2007.4301222⟩. ⟨hal-00455587⟩
245 Consultations
147 Téléchargements

Altmetric

Partager

More