Influence of the drying processes of yeasts on their volatile phenol sorption capacity in model wine. - Archive ouverte HAL Access content directly
Journal Articles International Journal of Food Microbiology Year : 2009

Influence of the drying processes of yeasts on their volatile phenol sorption capacity in model wine.

Abstract

Volatile phenols, such as 4-ethylphenol, are responsible for a "horsey" smell in wine. Thus, the study of volatile phenol sorption in yeasts, and their subsequent elimination from wine, helps to optimize eco-friendly wine curative processes. Here, we compared the influences of spray drying, lyophilization and evaporative drying at low water activity on yeast, for improving the 4-ethylphenol sorption capacity in a synthetic model wine. The changes that occur in the physico-chemical characteristics of the yeast surface (surface hydrophobicity, electron-donor character and zeta potential) during these drying processes were determined to assess if any correlation exists between these factors and the 4-ethylphenol sorption capacities of the cells. Evaporative drying at low water activity, spray drying and lyophilization induced, respectively, 61.5%, 169% and 192% greater 4-ethylphenol sorption than biomass without drying treatment. Surface hydrophobicity of yeasts was also significantly greater, but the zeta potential of yeast cells was significantly lower after the drying processes. This is the first report investigating changes to the physico-chemical variables affected during yeast drying. These cell surface modifications were correlated with the 4-ethyphenol sorption value measured.

Dates and versions

hal-00454567 , version 1 (08-02-2010)

Identifiers

Cite

R. Pradelles, S. Vichi, H. Alexandre, D. Chassagne. Influence of the drying processes of yeasts on their volatile phenol sorption capacity in model wine.. International Journal of Food Microbiology, 2009, 135 (2), pp.152-7. ⟨10.1016/j.ijfoodmicro.2009.07.019⟩. ⟨hal-00454567⟩
24 View
0 Download

Altmetric

Share

Gmail Facebook X LinkedIn More