Higher-Order Finite Elements for Hybrid Meshes Using New Nodal Pyramidal Elements - Archive ouverte HAL Access content directly
Journal Articles Journal of Scientific Computing Year : 2010

Higher-Order Finite Elements for Hybrid Meshes Using New Nodal Pyramidal Elements

Abstract

We provide a comprehensive study of arbitrarily high-order finite elements defined on pyramids. We propose a new family of high-order nodal pyramidal finite element which can be used in hybrid meshes which include hexahedra, tetrahedra, wedges and pyramids. Finite elements matrices can be evaluated through approximate integration, and we show that the order of convergence of the method is conserved. Numerical results demonstrate the efficiency of hybrid meshes compared to pure tetrahedral meshes or hexahedral meshes obtained by splitting tetrahedra into hexahedra.
Fichier principal
Vignette du fichier
JSC-Pyramids.pdf (715.05 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00454261 , version 1 (08-02-2010)

Identifiers

Cite

Morgane Bergot, Gary Cohen, Marc Duruflé. Higher-Order Finite Elements for Hybrid Meshes Using New Nodal Pyramidal Elements. Journal of Scientific Computing, 2010, 42 (3), pp.345--381. ⟨10.1007/s10915-009-9334-9⟩. ⟨hal-00454261⟩
322 View
834 Download

Altmetric

Share

Gmail Facebook X LinkedIn More