Transport properties of 2F = F2 in a temperature gradient as studied by molecular dynamics simulations - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Physical Chemistry Chemical Physics Année : 2007

Transport properties of 2F = F2 in a temperature gradient as studied by molecular dynamics simulations

Résumé

We calculate transport properties of a reacting mixture of F and F2 from results of nonequilibrium molecular dynamics simulations. The reaction investigated is controlled by thermal diffusion and is close to local chemical equilibrium. The simulations show that a formulation of the transport problem in terms of classical non-equilibrium thermodynamics theory is sound. The chemical reaction has a large effect on the magnitude and temperature dependence of the thermal conductivity and the interdiffusion coefficient. The increase in the thermal conductivity in the presence of the chemical reaction, can be understood as a response to an imposed temperature gradient, which reduces the entropy production. The heat of transfer for the Soret stationary state was more than 100 kJ mol1, meaning that the Dufour and Soret effects are non-negligible in reacting mixtures. This sheds new light on the transport properties of reacting mixtures.
Fichier non déposé

Dates et versions

hal-00454044 , version 1 (07-02-2010)

Identifiants

  • HAL Id : hal-00454044 , version 1

Citer

Jing Xu, Signe Kjelstrup, Dick Bedeaux, Jean-Marc Simon. Transport properties of 2F = F2 in a temperature gradient as studied by molecular dynamics simulations. Physical Chemistry Chemical Physics, 2007, 9, pp.969-981. ⟨hal-00454044⟩
55 Consultations
0 Téléchargements

Partager

Gmail Mastodon Facebook X LinkedIn More