The average state complexity of the star of a finite set of words is linear. - Archive ouverte HAL
Communication Dans Un Congrès Année : 2008

The average state complexity of the star of a finite set of words is linear.

Résumé

We prove that, for the uniform distribution over all sets X of m (that is a fixed integer) non-empty words whose sum of lengths is n, DX, one of the usual deterministic automata recognizing X*, has on average O(n) states and that the average state complexity of X* is O(n). We also show that the average time complexity of the computation of the automaton DX is O(n log n), when the alphabet is of size at least three.
Fichier principal
Vignette du fichier
dlt08-1.pdf (172.56 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00452752 , version 1 (03-02-2010)

Identifiants

  • HAL Id : hal-00452752 , version 1

Citer

Frédérique Bassino, Laura Giambruno, Cyril Nicaud. The average state complexity of the star of a finite set of words is linear.. International Conference on Developments in Language Theory, 2008, Japan. pp.134-145. ⟨hal-00452752⟩
228 Consultations
132 Téléchargements

Partager

More