Universal inequalities for the eigenvalues of a power of the Laplace operator - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2009

Universal inequalities for the eigenvalues of a power of the Laplace operator

Résumé

In this paper, we obtain a new abstract formula relating eigenvalues of a self-adjoint operator to two families of symmetric and skew-symmetric operators and their commutators. This formula generalizes earlier ones obtained by Harrell, Stubbe, Hook, Ashbaugh, Hermi, Levitin and Parnovski. We also show how one can use this abstract formulation both for giving dierent and simpler proofs for all the known results obtained for the eigenvalues of a power of the Laplace operator (i.e. the Dirichlet Laplacian, the clamped plate problem for the bilaplacian and more generally for the polyharmonic problem on a bounded Euclidean domain) and to obtain new ones. In a last paragraph, we derive new bounds for eigenvalues of any power of the Kohn Laplacian on the Heisenberg group.
Fichier principal
Vignette du fichier
Ilias-Makhoul_Polyharmonic.pdf (265.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00450662 , version 1 (27-01-2010)

Identifiants

Citer

Said Ilias, Ola Makhoul. Universal inequalities for the eigenvalues of a power of the Laplace operator. 2009. ⟨hal-00450662⟩
152 Consultations
173 Téléchargements

Altmetric

Partager

More