Fuzzy Piecewise Linear Regression
Résumé
Fuzzy regression using possibilistic concepts allows the identification of models from uncertain data sets. However, some limitations still exist about the possible evolution of the output spread with respect to inputs. We present here a modified form of fuzzy linear model whose output can have any kind of output spread tendency. The formulation of the linear program used to identify the model introduces a modified criterion that assesses the model fuzziness independently of the collected data. These concepts are used in a global identification process in charge of building a piecewise model able to represent every kind of output evolution.
Domaines
AutreOrigine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...