Ricci flow on open 3-manifolds and positive scalar curvature - Archive ouverte HAL
Article Dans Une Revue Geometry and Topology Année : 2011

Ricci flow on open 3-manifolds and positive scalar curvature

Laurent Bessières
  • Fonction : Auteur
  • PersonId : 849281
Gérard Besson

Résumé

We show that an orientable 3-dimensional manifold M admits a complete riemannian metric of bounded geometry and uniformly pos- itive scalar curvature if and only if there exists a finite collection F of spherical space-forms such that M is a (possibly infinite) connected sum where each summand is diffeomorphic to S2×S1 or to some mem- ber of F. This result generalises G. Perelman's classification theorem for compact 3-manifolds of positive scalar curvature. The main tool is a variant of Perelman's surgery construction for Ricci flow.
Fichier principal
Vignette du fichier
openflowlight.pdf (564.56 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00445607 , version 1 (10-01-2010)

Identifiants

Citer

Laurent Bessières, Gérard Besson, Sylvain Maillot. Ricci flow on open 3-manifolds and positive scalar curvature. Geometry and Topology, 2011, 15 (2), pp.927-975. ⟨10.2140/gt.2011.15.927⟩. ⟨hal-00445607⟩
157 Consultations
357 Téléchargements

Altmetric

Partager

More