Ricci flow on open 3-manifolds and positive scalar curvature
Résumé
We show that an orientable 3-dimensional manifold M admits a complete riemannian metric of bounded geometry and uniformly pos- itive scalar curvature if and only if there exists a finite collection F of spherical space-forms such that M is a (possibly infinite) connected sum where each summand is diffeomorphic to S2×S1 or to some mem- ber of F. This result generalises G. Perelman's classification theorem for compact 3-manifolds of positive scalar curvature. The main tool is a variant of Perelman's surgery construction for Ricci flow.
Origine | Fichiers produits par l'(les) auteur(s) |
---|