Clifford structures on Riemannian manifolds - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2009

Clifford structures on Riemannian manifolds

Andrei Moroianu
  • Fonction : Auteur
  • PersonId : 828514
Uwe Semmelmann
  • Fonction : Auteur
  • PersonId : 828824

Résumé

Motivated by considerations on curvature constancy and fat bundles, we introduce the notion of even Clifford structures on Riemannian manifolds, a framework generalizing Kähler and quaternion-Kähler geometries. We give the complete classification of manifolds carrying parallel even Clifford structures: Riemannian products of quaternion-Kähler manifolds, several classes of 8-dimensional manifolds, families of real, complex and quaternionic Grassmannians, as well as Rosenfeld's elliptic projective planes, which are symmetric spaces associated to the exceptional simple Lie groups. As an application, we classify all Riemannian manifolds whose metric is bundle-like along the curvature constancy distribution, generalizing well-known results in Sasakian and 3-Sasakian geometry.
Fichier principal
Vignette du fichier
cliff17.pdf (326.83 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00442442 , version 1 (21-12-2009)
hal-00442442 , version 2 (13-01-2010)
hal-00442442 , version 3 (02-02-2010)

Identifiants

Citer

Andrei Moroianu, Uwe Semmelmann. Clifford structures on Riemannian manifolds. 2009. ⟨hal-00442442v1⟩
343 Consultations
480 Téléchargements

Altmetric

Partager

More