Experimental study of a DBD surface discharge for the active control of subsonic airflow
Résumé
The use of plasmas, created by electric discharges, as aerodynamic actuators has been an exciting research topic for more than ten years. However, investigation of these electric discharges is still incomplete. This paper presents our contribution to the study of a DBD surface discharge. Complementary and coherent electrical, optical and aerodynamic measurements as a function of various parameters and geometries were performed. We measured the influence of the frequency and applied voltage of the discharge on the dissipated power. Experimental data yielded an empirical formula to calculate dissipated power and the energy lost in the dielectric was estimated. The plasma temperatures were also evaluated by spectroscopy emission measurements of N2 molecular bands. The velocity of the airflow induced by the DBD discharge in initially still air was measured as a function of the power dissipated in the discharge for different thicknesses and types of dielectric.