Pointwise consistency of the kriging predictor with known mean and covariance functions
Résumé
This paper deals with several issues related to the pointwise consistency of the kriging predictor when the mean and the covariance functions are known. These questions are of general importance in the context of computer experiments. The analysis is based on the properties of approximations in reproducing kernel Hilbert spaces. We fix an erroneous claim of Yakowitz and Szidarovszky (J. Multivariate Analysis, 1985) that the kriging predictor is pointwise consistent for all continuous sample paths under some assumptions.