The inverse Taylor expansion problem in linear logic - Archive ouverte HAL
Communication Dans Un Congrès Année : 2009

The inverse Taylor expansion problem in linear logic

Résumé

Linear Logic is based on the analogy between algebraic linearity (i.e. commutation with sums and with products with scalars) and the computer science linearity (i.e. calling inputs only once). Keeping on this analogy, Ehrhard and Regnier introduced Differential Linear Logic (D I LL) — an extension of Multiplicative Exponential Linear Logic with differential constructions. In this setting, promotion (the logical exponentiation) can be approximated by a sum of promotion- free proofs of D I LL, via Taylor expansion. We present a constructive way to revert Taylor expansion. Precisely, we define merging reduction — a rewriting system which merges a finite sum of D I LL proofs into a proof with promotion whenever the sum is an approximation of the Taylor expansion of this proof. We prove that this algorithm is sound, complete and can be run in non-deterministic polynomial time.
Fichier principal
Vignette du fichier
main.pdf (256.57 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00440684 , version 1 (11-12-2009)

Identifiants

Citer

Michele Pagani, Christine Tasson. The inverse Taylor expansion problem in linear logic. Logic in Computer Science, Aug 2009, Los Angeles, United States. pp.222--231, ⟨10.1109/LICS.2009.19⟩. ⟨hal-00440684⟩
130 Consultations
244 Téléchargements

Altmetric

Partager

More