Malliavin calculus for fractional delay equations
Résumé
In this paper we study the existence of a unique solution to a general class of Young delay differential equations driven by a Hölder continuous function with parameter greater that 1/2 via the Young integration setting. Then some estimates of the solution are obtained, which allow to show that the solution of a delay differential equation driven by a fractional Brownian motion (fBm) with Hurst parameter H>1/2 has a smooth density. To this purpose, we use Malliavin calculus based on the Frechet differentiability in the directions of the reproducing kernel Hilbert space associated with fBm.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...