Malliavin calculus for fractional delay equations - Archive ouverte HAL
Article Dans Une Revue Journal of Theoretical Probability Année : 2012

Malliavin calculus for fractional delay equations

Jorge A. Leon
  • Fonction : Auteur
  • PersonId : 836257
Samy Tindel
  • Fonction : Auteur
  • PersonId : 832698

Résumé

In this paper we study the existence of a unique solution to a general class of Young delay differential equations driven by a Hölder continuous function with parameter greater that 1/2 via the Young integration setting. Then some estimates of the solution are obtained, which allow to show that the solution of a delay differential equation driven by a fractional Brownian motion (fBm) with Hurst parameter H>1/2 has a smooth density. To this purpose, we use Malliavin calculus based on the Frechet differentiability in the directions of the reproducing kernel Hilbert space associated with fBm.
Fichier principal
Vignette du fichier
mallia-delay14.pdf (375.04 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00440655 , version 1 (11-12-2009)

Identifiants

Citer

Jorge A. Leon, Samy Tindel. Malliavin calculus for fractional delay equations. Journal of Theoretical Probability, 2012, 25 (3), pp.854-889. ⟨10.1007/s10959-011-0349-4⟩. ⟨hal-00440655⟩
244 Consultations
191 Téléchargements

Altmetric

Partager

More