Influence of TiN addition on the microstructure and mechanical properties of TiC based cermets
Résumé
In this paper, the TiC-based cermets with addition of TiN were fabricated by a conventional powder metallurgy process. The titanium nitride (TiN) and titanium carbide (TiC) used as starting powders have been synthesized by the self-propagating high temperature synthesis (SHS) method. This exothermic reaction, easy to process, allows to obtain fine and original powders from low-cost raw materials. Cermets obtained by sintering powders of TiC and Mo2C with nickel binder phase are investigated. The effect of TiN adding on the microstructure and the mechanical properties of these composites are studied. Microstructures have been observed by scanning electron microscopy (SEM). Room temperature mechanical properties such as Youngs modulus, fracture toughness and microhardness have been measured and related to morphology and chemical composition of the samples. Tribological experiments were also performed and the friction coefficient of a cermet containing titanium nitride was compared with that of other hard materials. The SHS starting powders used present some particularities, as it was shown in a previous study [Matériaux à base de carbures et nitrures, pour coupe et usure, obtenus à partir de poudre SHS, PhD Thesis, INSA Lyon, 2004]. The purpose of this work is to show that results concerning the impact of TiN addition on microstructure and mechanical properties obtained on bulk specimens, from these original starting powders, are similar to the ones obtained on alloys from commercial starting powders