Symmetric tensor decomposition - Archive ouverte HAL
Communication Dans Un Congrès Année : 2009

Symmetric tensor decomposition

Résumé

We present an algorithm for decomposing a symmetric tensor of dimension n and order d as a sum of of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for symmetric tensors of dimension 2. We exploit the known fact that every symmetric tensor is equivalently represented by a homogeneous polynomial in n variables of total degree d. Thus the decomposition corresponds to a sum of powers of linear forms. The impact of this contribution is two-fold. First it permits an efficient computation of the decomposition of any tensor of sub-generic rank, as opposed to widely used iterative algorithms with unproved convergence (e.g. Alternate Least Squares or gradient descents). Second, it gives tools for understanding uniqueness conditions, and for detecting the tensor rank.
Fichier principal
Vignette du fichier
symtens5.pdf (176.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00435908 , version 1 (25-11-2009)

Identifiants

  • HAL Id : hal-00435908 , version 1

Citer

Jérôme Brachat, Pierre Comon, Bernard Mourrain, Elias P. P. Tsigaridas. Symmetric tensor decomposition. 17th European Signal Processing Conference 2009., Aug 2009, Glasgow, United Kingdom. pp.525-529. ⟨hal-00435908⟩
305 Consultations
529 Téléchargements

Partager

More