Symmetric tensor decomposition
Résumé
We present an algorithm for decomposing a symmetric tensor of dimension n and order d as a sum of of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for symmetric tensors of dimension 2. We exploit the known fact that every symmetric tensor is equivalently represented by a homogeneous polynomial in n variables of total degree d. Thus the decomposition corresponds to a sum of powers of linear forms. The impact of this contribution is two-fold. First it permits an efficient computation of the decomposition of any tensor of sub-generic rank, as opposed to widely used iterative algorithms with unproved convergence (e.g. Alternate Least Squares or gradient descents). Second, it gives tools for understanding uniqueness conditions, and for detecting the tensor rank.
Origine | Fichiers produits par l'(les) auteur(s) |
---|