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ABSTRACT

We present an algorithm for decomposing a symmetric
tensor of dimension n and order d as a sum of of rank-1
symmetric tensors, extending the algorithm of Sylvester
devised in 1886 for symmetric tensors of dimension 2.
We exploit the known fact that every symmetric tensor
is equivalently represented by a homogeneous polyno-
mial in n variables of total degree d. Thus the decom-
position corresponds to a sum of powers of linear forms.

The impact of this contribution is two-fold. First
it permits an efficient computation of the decomposi-
tion of any tensor of sub-generic rank, as opposed to
widely used iterative algorithms with unproved conver-
gence (e.g. Alternate Least Squares or gradient de-
scents). Second, it gives tools for understanding unique-
ness conditions, and for detecting the tensor rank.

1. INTRODUCTION

Symmetric tensors show up in applications mainly as
high-order derivatives of multivariate functions. For
instance in Statistics, cumulant tensors are derivatives
of the second characteristic function [1]. Tensors have
been widely utilized in Electrical Engineering since the
nineties, because of the use of High-Order Statistics [2]
[3] [4] [5] [6] [7]. Even earlier in the seventies, tensors
have been used in Chemometrics [8] or psychometrics
[9]. Another important application field is Data Analy-
sis. For instance, Independent Component Analysis was
originally introduced for symmetric tensors whose rank
did not exceed dimension [10] [11]. Now, it has become
possible to estimate more factors than the dimension.
Further references may be found in [12] [13], and nu-
merous applications of tensor decompositions may be
found in [14] [15].

The goal of this paper is to devise an algebraic tech-
nique able to decompose a symmetric tensor of arbi-
trary order and dimension in an essentially unique man-
ner (i.e. up to scale and permutation) into a sum of
rank-one terms. Of course, reaching such a goal re-
quires some conditions, in particular related to its rank,
which must be sub-generic. Our algorithm could be seen
as an extension of the SVD algorithm from matrices
to n-way arrays. We exploit the strong connection of
symmetric tensors and homogeneous polynomials. This
approach allows us to use effective algebraic geometry
techniques, and to tackle the problem of decomposition
using Veronese varieties, duality of vector spaces, and
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algorithms for polynomial system solving. To the best
of our knowledge this is the first time that a decompo-
sition algorithm for symmetric tensors is presented.

The rest of the paper is structured as follows: In the
remaining of the section we present some historical re-
marks and we shed light to the connection of symmetric
tensors and homogeneous polynomials. Sec. 2 presents
Sylvester’s approach for the binary case. In Sec. 3 we
exploit many different, albeit equivalent, algebraic for-
mulations of the decomposition problem, as well as the
necessary algebraic tools. In Sec. 4 we present the algo-
rithm and illustrate it with an example.

1.1 Historical remarks

Despite their obvious practical interest, numerical al-
gorithms presently used in most scientific communities
are suboptimal, in the sense that they either do not
fully exploit symmetries [16], minimize different succes-
sive criteria sequentially [17] [18], or are iterative and
lack a guarantee of global convergence [19] [20]. In ad-
dition, they often request the rank to be much smaller
than generic [21]. For estimating the mixing matrix in
independent component analysis, based on fourth-order
cumulant tensor, we refer the reader to [18].

On the other hand, the algorithm based on
Sylvester’s theorem [22], recalled in section 2, provides
a complete answer to the questions of uniqueness and
computation, for any order [23]. However, the latter is
devoted to 2-dimensional symmetric tensors, and tech-
niques based on pairwise processing have a very limited
range of use when the rank exceeds the dimension.

The algorithm proposed in this paper is inspired
from Sylvester’s theorem, and extends its principle to
larger dimensions. In addition, it fully exploits sym-
metry, and when the solution is essentially unique, it
provides the decomposition for any sub-generic rank.

1.2 Tensors and Polynomials

Any symmetric tensor of dimension n, i.e. the range
of each index, and order d, i.e. the number of in-
dices, can be associated with a homogeneous polyno-
mial in n variables of degree d. For instance, a third
order tensor Tijk can be associated with the polynomial∑

ijk c(i, j, k)Tijk xixjxk, where c(·) denotes some fixed

symmetric function. See e.g. [23] for further details. We
consider a homogeneous polynomial Fh(x)

Fh(x) =
∑

j0+j1+···+jn=d

aj0,j1,...,jn
x

j0
0 x

j1
1 · · ·x

jn

n . (1)



Our goal is to compute a decomposition of
Fh as a sum of dth powers of linear forms,
Fh(x) =

∑r

i=1 λi(ki,0x0 + · · ·+ ki,nxn)d =

λ1k1(x)d + λ2k2(x)d + · · · + λrkr(x)d, where λi ∈ (C,
such that r is the smallest possible. This smallest r is
often referred to as the tensor rank, or sometimes the
polynomial width.

Let’s see now how the decomposition is made possi-
ble in the case of homogeneous polynomials in two vari-
ables only.

2. THE BINARY CASE

Let p(x1, x2) =
∑d

i=0

(
d
i

)
ci xi

1 xd−i
2 be a homogeneous

polynomial of degree d in 2 variables. Denote H [r] the
Hankel matrix of dimensions (d − r + 1)× (r + 1) with
entries H [r]ij = ci+j−2:

H [r] =




c0 c1 · · · cr

...
...

cd−r · · · cd−1 cd



 .

Then we have:

Sylvester, 1886 p(x1, x2) can be written as a sum of
dth powers of r distinct linear forms in (C as:

p(x1, x2) =

r∑

j=1

λj (αj x1 + βj x2)
d, (2)

if and only if (i) there exists a vector q of dimension
r + 1, with components qℓ, such that

H [r] q = 0. (3)

and (ii) the polynomial q(x1, x2) =
∑r

ℓ=0 qℓ xℓ
1 xr−ℓ

2 ad-
mits r distinct roots, i.e. it can be written as q(x1, x2) =∏r

j=1(β
∗
j x1 − α∗

j x2).

It turns out that the proof of this theorem is constructive
[24] [23] [25] and yields the algorithm below.
1. Initialize r = 0
2. Increment r ← r + 1
3. If the row rank of H [r] is full, then go to step 2
4. Else compute a basis {k1, . . . ,kl} of the right kernel

of H [r].
5. Specialization (pick a random vector in the kernel):

• Take a generic vector q in the kernel, e.g. q =∑
i µiki

• Compute the roots of the associated polyno-
mial q(x1, x2) =

∑r

ℓ=0 qℓ xℓ
1 xd−ℓ

2 . Denote them
(βj ,−αj), where |αj |

2 + |βj |
2 = 1.

• If the roots are not distinct in P
2, try another spe-

cialization. If distinct roots cannot be obtained,
go to step 2.
• Else if q(x1, x2) admits r distinct roots then com-

pute the coefficients λj , 1 ≤ j ≤ r, by solving the
linear system below





αd
1 . . . αd

r

αd−1
1 β1 . . . αd−1

r βr

αd−2
1 β2

1 . . . αd−1
r β2

r

: : :
βd

1 . . . βd
r




λ =





c0

c1

c2

:
cd




.

6. The decomposition is p(x1, x2) =
∑r

j=1 λj kj(x)d,

where kj(x) = (αj x1 + βj x2).

Note that step 5 is a specialization only if the dimension
of the right kernel is larger than one, which will not
occur for ranks smaller than generic.

The goal is now to extend this kind of numerical al-
gorithm to polynomials in more variables. This problem
was open until now.

3. PROBLEM FORMULATIONS

Notation. If a = (a1, . . . , an) is a vector in INn, then
|a| is the sum of its elements, i.e. |a| =

∑n

i=a ai. By xa

will denote the monomial xa1

1 · · · x
an
n .

Let R be the ring of polynomials (C[x1, . . . , xn],
while Rd will denote the vector space of polynomi-
als of (total) degree at most d. The set {xa}|a|≤d =
{xa1

1 · · ·x
an
n }a1+···+an≤d represents the elements of the

monomial basis of the vector space Rd. It contains(
n+d−1

d

)
elements. The corresponding basis of the dual

space R̂d, that is the set of linear forms that com-
pute the coefficients of a polynomial in the primal ba-
sis, is the set {da}|a|≤d, where da : Rd → (C and

da(f) = 1
Q

n
i=1

ai!

(
da1

dx1

· · · dan

dxn
f
)

(0).

The superscript h denotes the homogeneous version
of the polynmomial. Let S be the set of homogeneous
polynomials in n + 1 variables. Sd represents the ho-
mogeneous polynomials of degree d, and P(Sd), the cor-
responding projective space. Similarly interpretations

hold for the dual spaces Ŝ and Ŝd. Analogous to the
affine case, we can define primal and dual bases for the
homogeneous case.

3.1 Direct approach by polynomial fitting

The first idea is merely to solve, in a given polynomial
basis, the polynomial system, induced by the equation

Fh(x)−
∑

i

ki(x)d = 0,

with respect to the coefficients of the linear forms ki. We
call this the direct approach. In the tensor framework,
even if the rank is supposed to be known, attempts to
solve this problem have not entailed efficient algorithms
(cf. section 1). In the polynomial framework, it is easy
to see that we end up with an over-determined polyno-
mial system of

(
n+d

d

)
equations in r(n + 1) unknowns.

This description of the problem is not optimal, since it
introduces r! redundant solutions corresponding to per-
mutations of the linear forms. Another drawback is that
polynomials involved are of degree d in the coefficients
ki,n, which are too high from the computational point of
view. In fact, our approach does not involve the solution
of polynomial systems of degree higher than 2.

3.2 Different views using duality

We consider the following Veronese map of degree d

ν : S1 → Sd

k(x) 7→ k(x)d.



which sends a linear (homogeneous) polynomial to
its d−th power. Recall that the (monomial) basis
of S1 is the set {x0, x1, . . . , xn}, while the basis of
Sd is the set {xa}|a|≤d = {xa0

0 xa1

1 · · ·x
an
n }a1+···+an=d,

viz. the set of all the monomials in x0, x1, . . . , xn

of total degree d. The cardinality of the basis is(
n+d

d

)
− 1. Under the action of ν, a linear polyno-

mial k(x) = k0x0 + · · · + knxn corresponds to k(x)d =∑
i0+···+in=d

(
d

io,...,in

)
ki0
0 · · · k

in
n xi0

0 · · ·x
in
n . In terms of

vectors, k = [k0, . . . , kn]⊤ corresponds to the vector

[. . . ,
(

d

i0,...,in

)
ki0
0 · · ·k

in
n , . . . ]⊤.

Another Veronese map, also of degree d, is

δ : (Cn+1
→

bSd

z 7→ 1z,

which sends a point z = (z0, z1, . . . , zn) to

[. . . , zi0
0 · · · z

in
n , . . . ]. Recall that the linear functionals

{da}|a|=d consist a basis of Ŝd. It holds that S1
∼= (Cn+1.

The map τ :

τ : Ŝd → Sd

[ . . . , zi0
0 . . . zin

n , . . . ]
⊤
7→ [ . . . ,

(
d

i0,...,in

)
zi0
0 . . . zin

n , . . . ]
⊤

is an isomorphism. The map remains an isomorphism
even if we restrict it to the images of the maps ν and δ,
that is ν(S1) and δ( (Cn), respectively. The inverse of τ

is the map τ−1 : Sd → Ŝd. Consider a polynomial in Sd,
that is the d−th power of a linear form, say k(x)d. If
we apply the map τ−1 to this polynomial, then we have
that τ−1(k(x)d) = 1k; that is the linear form that gives
the evaluation of a polynomial (homogeneous of degree

d) over the point k = [k0, k1, . . . , kn]
⊤

.
Let us now revisit the problem of decomposition. Ini-

tially we are given a polynomial Fh(x) ∈ Sd. The de-
composition Fh(x) =

∑r

i=1 λiki(x)d corresponds to a
secant variety in ν(S1) ⊂ Sd. Using the properties of
the isomorphism τ and its inverse we can gain another
view of the problem. If we apply τ−1 to Fh we compute
its dual, that is Φ = τ−1(Fh). The decomposition of
the latter, i.e. Φ =

∑r

i=1 λi 1ki
, is a linear combination

of elements in δ( (Cn) ⊂ R̂d.
Overall, it holds that τ−1(Fh(x)) =

τ−1
(∑r

i=1 λi ki(x)d
)

=
∑r

i=1 λiτ
−1(ki(x)d) =∑r

i=1 λi1ki
= Φ. Moreover, τ(Φ) = τ (

∑r

i=1 λi1Li
) =∑r

i=1 λiτ(1ki
) =

∑r

i=1 λiki(x)d = Fh(x).
All the previous views of the decomposition problem

are equivalent. The results obtained for any of them
could be translated for the other.

3.3 Quotient algebra and duality

The idea of the algorithm is to exploit the properties of

Φ ∈ R̂, that we assume that is known up to degree d.
More precisely, we consider the symmetric bilinear formHΦ : (p, q) 7→ Φ(p q), the matrix of which in the mono-
mial basis is (Φ(xa+b))a,b∈INn . Let IΦ be the kernel ofHΦ.

Proposition 3.2 If Φ =
∑r

i=1 λi1ki
with λi 6= 0 and

ki ∈ (Cn, then p ∈ IΦ iff p(ki) = 0 for i = 1, . . . , r.

In other words, the common roots of all the polynomials
in IΦ define the linear terms in the tensor decomposition
of F .

In order to compute the zeros of IΦ, we may use a
well-known theorem (see e.g. [26, 27, 28]), which we
apply to the zero-dimensional ideal IΦ:

Theorem 3.3 The eigenvalues of the matrices Ma andM⊤
a , of the linear operators that correspond to the

multiplication by a in R modulo IΦ, and its trans-
posed, are {a(k1), . . . , a(kr)}. The common eigenvec-
tors of the matrices (M⊤

xi
)1≤i≤n are (up to a scalar) 1ki

,
i = 1, . . . , r.

If we denote by HE
Φ the restriction of HΦ to a vector

space E of dimension r on which HΦ is invertible, we
have the relation HE

a⋆Φ = M⊤
a HE

Φ , where Ha⋆Φ : (p, q) 7→
Φ(a p q). Thus the solution of the generalized eigen-
value problem (HE

a⋆Λ− ζHE
Λ )v = O yields the eigenvec-

tor HE
Λv of M⊤

a , which are by Th. 3.3, the evaluations1ki
. From these eigenvectors, we deduce the linear fac-

tors in the tensor decomposition. The coefficients λi

(i = 1, . . . , r) can then be computed by solving a linear
system of size r.

4. ALGORITHM

The algorithm that we will present for decomposing a
symmetric tensor as sum of rank 1 symmetric tensors
generalizes the algorithm of Sylvester [24], devised for
dimension 2 tensors, see also [29].

4.1 Overview

Algorithm 1: Symmetric tensor decomposition

Input: A homogeneous polynomial
f(x0, x1, . . . , xn) of degree d.

Output: A decomposition of f as
f =

∑r

i=1 λi ki(x)d with r minimal.

– Compute the coefficients of f∗: cα = aα

(
d
α

)−1
,

for |α| ≤ d, α = (α1, . . . , αn);

– r := 1;

– Repeat

1. Compute a set B of monomials of degree ≤ d

connected to 1 with |B| = r;

2. Find parameters h s.t. det(HB
Φ ) 6= 0 and the

operators Mi = HB
xiΦ

(HB
Φ )−1 commute.

3. If there is no solution, restart the loop with
r := r + 1.

4. Else compute the n× r eigenvalues ζi,j

and the eigenvectors vj , s.t. Mivj = ζi,jvj ,
i = 1, . . . , n, j = 1, . . . , r.

until the eigenvalues are simple.

– Solve the linear system in (λj)j=1,...,k:
Φ =

∑r

j=1 λj1vj
where vj ∈ K

n are the
eigenvectors found in step 4.

Let us briefly comment on the computation process.
A basis connected to 1, is a basis containing 1 where each



element different from 1, is the product of a variable by
another element of the basis. Consider the homogeneous
polynomial f(x) in (1) that we want to decompose. We
may assume without loss of generality, that for at least
one variable, say x0, all its coefficients in the decom-
position are non zero, i.e. ki,0 6= 0, for 1 ≤ i ≤ r.
We dehomogenize f with respect to this variable and
we denote this polynomial by fa := f(1, x1, . . . , xn).
We want to decompose the polynomial fa(x) ∈ Rd

as a sum of powers of linear forms, i.e. f(x) =∑r

i=1 λi (1 + ki,1x1 + · · ·+ ki,nxn)d =
∑r

i=1 λi ki(x)d.
Equivalently, we want to decompose its corresponding

dual element f∗ ∈ R̂d as a linear combination of eval-
uations over the distinct points ki := (ki,1, · · · , ki,n):
f∗ =

∑r

i=1 λi 1ki
(we refer the reader to the end of Sec-

tion 3.2).
Assume that we know the value of r. If we know

the value of Φ on polynomials of degree high enough, it
allows us to compute the tables of multiplication mod-
ulo the kernel of HΦ. By Theorem 3.3, if we solve the
generalized eigenvector problem (Hx1⋆Φ − ζHΦ)v = O,
then we can recover the points of evaluation ki. By
solving a linear system, we will then deduce the value
of λi, . . . , λr . For certain (big) values of r it can happen
that not all the elements of the corresponding matrices
are known. In this case, we use the property that the
matrices of multiplication commute, and we form a sys-
tem, the solutions of which are these unknown elements.
We refer the reader to [12, 13] for details, and we present
an example to illustrate the algorithm.

4.2 Example

(1) Convert the symmetric tensor to the corresponding
homogeneous polynomial.

Assume that we are given a tensor of dimension 3
and order 5, and that the corresponding homogeneous
polynomial is f = −1549440 x0x1x2

3 +2417040 x0x1
2x2

2 +
166320 x0

2x1x2
2

− 829440 x0x1
3x2 − 5760 x0

3x1x2 −

222480 x0
2x1

2x2 + 38 x0
5
− 497664 x1

5
− 1107804 x2

5
−

120 x0
4x1 + 180 x0

4x2 + 12720 x0
3x1

2 + 8220 x0
3x2

2
−

34560 x0
2x1

3
−59160 x0

2x2
3+831840 x0x1

4+442590 x0x2
4
−

5591520 x1
4x2 + 7983360 x1

3x2
2

− 9653040 x1
2x2

3 +
5116680 x1x2

4.
(2) Compute the matrix of the linear form.

We form a
(
n+d−1

d

)
×

(
n+d−1

d

)
matrix, the rows and

the columns of which correspond to the evaluation of the
dual of the polynomial over all the monomial {xa}|a|≤d,

using the map aj0 j1 ... jn
7→ aj0 j1 ... jn

j0! j1! ... jn!
d!

, where

aj0 j1 ... jn
is the coefficient of the monomial x

j0
1 · · ·x

jn
n .

Part of the corresponding matrix follows.





1 x1 x2 x2
1

x1x2 x2
2

x3
1

38 −24 36 1272 −288 822 −3456

−24 1272 −288 −3456 −7416 5544 166368

36 −288 822 −7416 5544 −5916 −41472

1272 −3456 −7416 166368 −41472 80568 −497664

−288 −7416 5544 −41472 80568 −77472 −1118304

822 5544 −5916 80568 −77472 88518 798336

−3456 166368 −41472 −497664 −1118304 798336 h6,0,0
−7416 −41472 80568 −1118304 798336 −965304 h5,1,0

5544 80568 −77472 798336 −965304 1023336 h4,2,0
−5916 −77472 88518 −965304 1023336 −1107804 h3,3,0





The whole matrix is 21×21. For reasons of space we
present only the first 7 columns. Notice that we do not
know the elements in some positions of the matrix (in
the 7th column). In general we do not know the elements

that correspond to monomials with (total) degree higher
than 5.
(3) Extract a principal minor of full rank.

We should re-arrange the rows and the columns of
the matrix so that the first principal minor is of full rank,
r. We call this minor HΦ. In order to do that we try to
put the matrix in row echelon form, using elementary
row and column operations. In our example the 4 × 4
principal minor is of full rank, so there is no need for
re-arranging the matrix. The matrix HΦ isHΦ =





38 −24 36 1272
−24 1272 −288 −3456

36 −288 822 −7416
1272 −3456 −7416 166368





Notice that the columns of the matrix correspond to the
monomials {1, x1, x2, x

2
1}.

(4) We compute the “shifted” matrix Hx1⋆Φ.
If the columns ofHΦ correspond to set of some mono-

mials, say {xa}, then the columns of Hx1⋆Φ correspond
to the set of monomials {x1 xa}. In our exampleHx1⋆Φ





−24 1272 −288 −3456
1272 −3456 −7416 166368
−288 −7416 5544 −41472

−3456 166368 −41472 −497664



 ,

the columns of which correspond to the monomi-
als {x1, x

2
1, x1x2, x

3
1}, i.e. the monomials of HΦ,

{1, x1, x2, x
2
1}, multiplied by x1.

We assume for the moment that all the elements of
the matrices Hx1⋆Φ and HΦ are known. If this is not the
case, then we can compute the unknown entries of the
matrix, using necessary and sufficient conditions of the
quotient algebra; it holds that Mxi

Mxj
−Mxj

Mxi
= O.

We refer the reader to [12] for details.
(5) We solve the equation (Hx1⋆Φ − ζHΦ)v = 0.

We solve the generalized eigenvalue/eigenvector
problem using one of the well-known techniques [30].
We multiply the (generalized) eigenvectors by HΦ and
we normalize the resulting vectors so that the first ele-
ment is 1, and we read the solutions from the coordinates
of the (normalized) eigenvectors, according to Th. 3.3.
In our example the normalized eigenvectors are





1
−12
−3
144



 ,





1
12

−13
144



 ,





1
−2

3
4



 ,





1
2
3
4





The coordinates of the eigenvectors correspond to the
elements {1, x1, x2, x

2
1}. Thus, we can recover the coef-

ficients of x1 and x2 in the decomposition from coordin-
ates of the eigenvectors. Thus, The polynomial admits a
decomposition f = λ1(x0−12x1−3x2)

5 +λ2(x0−2x1 +
3x2)

5 + λ3(x0 + 2x1 + 3x2)
5 + λ4(x0 + 12x1 − 13x2)

5.
It remains to compute λi’s. We can do this easily

by solving an over-constrained linear system, which we
know that always has a solution, since the decomposi-
tion exists. Doing that, we deduce that λ1 = 5, λ2 = 15,
λ3 = 15 and λ4 = 3. We obtain the following minimum
decomposition of the polynomial as a sum of powers of
linear forms: f = 5(x0 − 12x1 − 3x2)

5 + 15(x0 − 2x1 +
3x2)

5 +15(x0 +2x1 +3x2)
5 +3(x0 +12x1− 13x2)

5 that
is the corresponding tensor is of rank 4.



5. CONCLUSIONS AND FUTURE WORK

We proposed an algorithm for symmetric tensor decom-
position, extending the algorithm of Sylvester to dimen-
sions higher than 2. The algorithm decomposes sym-
metric tensors when the rank is sub-generic and when
the decomposition is unique. In order for the algorithm
to work for any rank, we should be able to extend the
quotient matrix defined in Sec. 3.3. We will report on
this in the near future. We are currently working on an
efficient C++ implementation of the algorithm.

We thank the anonymous referees for their comments that helped

us improve the paper.
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