Progress in multidimensional NMR investigations of peptide and protein 3-D structures in solution. From structure to functional aspects
Résumé
2-D and 3-D NMR techniques were used to investigate the conformations in solution of several peptides and proteins for which crystalline structures are not available yet. Insect defensin A is a small (40 aa) antibiotic protein exhibiting a characteristic 'loop-helix-beta-sheet' structure. A striking analogy was found with charybdotoxin, a scorpion toxin in which a CSH (cysteine stabilized alpha-helix) motif is also present. Wheat phospholipid transfer protein (PLTP) (90 aa) has a 3-D structure resulting from the packing of four helices and of a C-terminal less well-defined fragment. Preliminary results show that PLTP forms a complex with lyso-PC and that such an interaction results in a conformational change affecting principally the C-terminal half of the protein. A last example is given with surfactin, a lipopeptide biosurfactant from bacterial origin. Its protonated form shows a very compact structure in which the two acidic residues located on the top of a 'horse saddle' topology face each other, whereas the ionized form could adopt a more extended conformation. A common property of these compounds is their capacity to interact with lipids. The present structural data open the way for a further establishment of structure-activity relationships.