On Some Sets of Dictionaries Whose omega-Powers Have a Given Complexity - Archive ouverte HAL
Article Dans Une Revue Mathematical Logic Quarterly Année : 2010

On Some Sets of Dictionaries Whose omega-Powers Have a Given Complexity

Olivier Finkel
  • Fonction : Auteur
  • PersonId : 834645

Résumé

A dictionary is a set of finite words over some finite alphabet X. The omega-power of a dictionary V is the set of infinite words obtained by infinite concatenation of words in V. Lecomte studied in [Omega-powers and descriptive set theory, JSL 2005] the complexity of the set of dictionaries whose associated omega-powers have a given complexity. In particular, he considered the sets $W({\bf\Si}^0_{k})$ (respectively, $W({\bf\Pi}^0_{k})$, $W({\bf\Delta}_1^1)$) of dictionaries $V \subseteq 2^\star$ whose omega-powers are ${\bf\Si}^0_{k}$-sets (respectively, ${\bf\Pi}^0_{k}$-sets, Borel sets). In this paper we first establish a new relation between the sets $W({\bf\Sigma}^0_{2})$ and $W({\bf\Delta}_1^1)$, showing that the set $W({\bf\Delta}_1^1)$ is ``more complex" than the set $W({\bf\Sigma}^0_{2})$. As an application we improve the lower bound on the complexity of $W({\bf\Delta}_1^1)$ given by Lecomte. Then we prove that, for every integer $k\geq 2$, (respectively, $k\geq 3$) the set of dictionaries $W({\bf\Pi}^0_{k+1})$ (respectively, $W({\bf\Si}^0_{k+1})$) is ``more complex" than the set of dictionaries $W({\bf\Pi}^0_{k})$ (respectively, $W({\bf\Si}^0_{k})$) .
Fichier principal
Vignette du fichier
Dictionaries-revised-2-MLQ.pdf (137.26 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00432736 , version 1 (17-11-2009)

Identifiants

Citer

Olivier Finkel. On Some Sets of Dictionaries Whose omega-Powers Have a Given Complexity. Mathematical Logic Quarterly, 2010, 56 (5), pp.452-460. ⟨10.1002/malq.200810154⟩. ⟨hal-00432736⟩
113 Consultations
126 Téléchargements

Altmetric

Partager

More