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A dictionary is a set of finite words over some finite alphallet The w-power of a dictionary/ is the set of
infinite words obtained by infinite concatenation of wordd/in Lecomte studied in [1] the complexity of the
set of dictionaries whose associate¢powers have a given complexity. In particular, he congddhe sets
W(Z?) (respectively)V(IT}), W(AY)) of dictionariesV C 2* whosew-powers arex)-sets (respectively,
II)-sets, Borel sets). In this paper we first establish a nevtioeldetween the sets/(29) and W(A1),
showing that the setV(A1) is “more complex” than the sét/(X39). As an application we improve the lower
bound on the complexity ofv(A1) given by Lecomte, showing that/(A1) is in 3(227)\ TI3. Then we
prove that, for every integet > 2, (respectively,k > 3) the set of dictionariesV)(IT{ 11) (respectively,
W(Z,1)) is “more complex” than the set of dictionari®g(II},) (respectively)V(Z7)) .

Copyright line will be provided by the publisher

1 Introduction

A finitary language, called here also a dictionary as in [§]aiset of finite words over some finite alphabet
X. Thew-power of a dictionary/ is the set of infinite words obtained by infinite concatenatid words in

V. Thew-powers appear very naturally in Theoretical Computer i8meand in Formal Language Theory, in
the characterization of the classes of languages of infimitels accepted by finite automata or by pushdown
automata, [2].

Since the set of infinite words over a finite alphal¥eis usually equipped with the Cantor topology, the question
of the topological complexity of the-powers of finitary languages naturally arises. It has beseg by Niwinski

[3], Simonnet [4] and Staiger [5].

Firstly it is easy to see that the-power of a finitary languag® is always an analytic set because it is the
continuous image of either a compact §gf. .., n}* for n > 0, or the Baire space®.

The first example of a finitary languadesuch that theo-power L« is analytic but not Borel, and eves -
complete, was obtained in [6]. Amazingly the langudgbas a very simple description and was obtained via
a coding of the infinite labelled binary trees. The constaucwill be recalled below. For the Borel-powers,
after some partial results obtained in [7-9], the questidh®@Borel hierarchy ofo-powers of finitary languages
has been solved recently by Finkel and Lecomte in [10], wherery surprising result is proved, showing that
actuallyw-powers exhibit a great topological complexity. For evespmull countable ordinal there exist some
30 -completev-powers and also sonid? -completev-powers.

* Corresponding author E-mafinkel@logique.jussieu.fr
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2 O. Finkel: On some sets of dictionaries whas@owers have a given complexity

Another question naturally arises abaupowers and descriptive set theory. It has been firstly stlidy Lecomte
in [1]. He asked about the complexity of the set of dictioaafvhose associatedpowers have a given complex-
ity. The sedV(XY) (respectivelyW(I1), W(A1)) is the set of dictionaries over the alphabet {0, 1} whose
w-powers arezg-sets (respectivel;],‘[?-sets, Borel sets). The set of dictionaries over the alptabe {0,1}

can be naturally equipped with the Cantor topology. Therobee proved tharV(X9) is in £3(227)\ I3 and
that all the other setsV(32), W(ILY), andW(A1) are in23(2%")\ D2(%Y), whereD,(X9) is the class of
2-differences of open sets, that is, the class of sets whiginégrsections of an open set and of a closed set. Itis
proved in [11] that for each countable ordigal 3 the sets/V(%?) andW(IIY) are actuallyiI}-hard. In this
paper we obtain first a new relation between the B8{£9) andW(A1}), showing thatV(X9) is continuously
reducible toyW (A1), which means that the seV(A1l) is “more complex” than the set/(X9). As an applica-
tion we improve the lower bound on the complexity)of( A1) given by Lecomte, showing thaw' (A1) is in
34(22")\II3. Then we prove that, for every intege> 2, (respectivelyk > 3) the set of dictionarieBV (I, ;)
(respectivelyW (X}, ,)) is “more complex” than the set of dictionarigg(II}) (respectively)V (X)) .

The paper is organized as follows. In Section 2 we recall soatations of formal language theory and some
notions of topology. We prove our results in Section 3. Soorectuding remarks are given in Section 4.

2 Borel and projective hierarchies

We use usual notations of formal language theory which m&pined for instance in [2, 12].

WhenX is a finite alphabet, aon-empty finite wordver X is any sequence = a; . ..ay, wherea; € X for
i=1,...,k,andk is an integee> 1. Thelengthof «x is k, denoted byz|. Theempty worchas no letter and is
denoted by; its length is). X * is theset of finite wordg¢including the empty word) oveX, andX+ = X*\ {\}
is the set ohon-empty finite wordsA finitary language called here also dictionary, over the alphabeX is a
subset ofX ™.

An w-word over X is anw -sequence; .. .a, ..., where for all integers > 1, a; € X. Wheno is anw-word
over X, we writteo = o(1)o(2)...0(n)..., where for alli, o(i) € X, ando[n] = o(1)o(2)...0(n) for all
n > 1 ando[0] = .

The usual concatenation product of two finite wordandv is denotedu - v (and sometimes jusiv). This
product is extended to the product of a finite warend anw-word v: the infinite wordu - v is then thev-word
such that:

(u-v)(k) =u(k)if k <lu|,and(u-v)(k) = vk — |ul) if &> |u].

The prefix relationis denoted_: a finite wordu is aprefix of a finite wordwv (respectively, an infinite word),
denoted: C v, if and only if there exists a finite word (respectively, an infinite word), such that = u - w.
The set of w-wordsover the alphabeX is denoted byX“. An w-languageover an alphabeX is a subset of
X“.

We shall denoteX = = X* U X“ the set offinite or infinite words over the alphabéx.

We assume the reader to be familiar with basic notions ofltmgovhich may be found in [2,13-16]. There is a
natural metric on the set“ of infinite words over a finite alphabéf containing at least two letters. It is called
the prefix metricand is defined as follows. Far,v € X“ andu # v let §(u, v) = 27 tprefu) wherel, o (y,v) 1S
the first integen such that thén + 1) letter ofw is different from the(n + 1) letter ofv. This metric induces
on X“ the usual Cantor topology for which tlepen subsetsf X are of the formiV - X« wherelW C X*. A
setl C X¥ is aclosed seiff its complementX“ \ L is an open set. Define now tB®rel Hierarchyof subsets
of Xv:

Definition 2.1 For a non-null countable ordinal, the classe&? andII? of the Borel Hierarchy on the
topological spac&X“ are defined as follows:
39 is the class of open subsetsX®f, T1{ is the class of closed subsetsXf,
and for any countable ordinal > 2:
3, is the class of countable unions of subsetefin |, _, IT9.

ITY is the class of countable intersections of subsefs®fn U <a 9.
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For a countable ordinal, a subset oE“ is a Borel set ofank v iff it is in 3% UTIY but notinJ %0 UII)).

7<a(
There exists another hierarchy beyond the Borel hieramghigh is called the projective hierarchy. The classes
»1 andII}, for integersn > 1, of the projective hierarchy are obtained from the Boretdiehy by successive
applications of operations of projection and compleméwmafl he first level of the projective hierarchy consists
of the class o&nalytic setsand the class afo-analytic setsvhich are complements of analytic sets. In particular,
the class of Borel subsets &f“ is strictly included in the clasE! of analytic sets The class of analytic sets is
also the class of the continuous images of Borel sets.

We now recall the notion of Wadge reducibility, which will hendamental in the sequel.

Definition 2.2 (Wadge [17]) LetX, Y be two finite alphabets. Fdr C X“ andL’ C Y, L is said to be
Wadge reducible td’ (L <y L') iff there exists a continuous functigh: X« — Y“, such that., = f~1(L’).
L andL’ are Wadge equivalentiff <y, L’ andL’ <y L. Thisis denoted by. =y, L’.

The relation<yy is reflexive and transitive, andy; is an equivalence relation.

Theequivalence classex =y are calledNVadge degrees

ForL C X* andL' C Y¥,if L <y L’ andf is a continuous function fronX into Y with L = f~(L/),
thenf is called a continuous reduction bfto L’. Intuitively it means thaf is less complicated thakf because
to check whethet € L it suffices to check whethef(z) € L’ wheref is a continuous function.

Recall that each Borel class® andII? is closed under inverse images by continuous functions laatdat set
L C X¥is aXx! (respectiveyII?)-complete seiff for any setL’ C Y«, L' is in X% (respectivelyI1?) iff
L' <w L.

There is a close relationship between Wadge reducibilitygames that we now introduce.

Definition 2.3 Let L C X¥ andL’ C Y“. The Wadge gam#&/ (L, L’) is a game with perfect information
between two players. Player 1 is in chargd.cdnd Player 2 is in charge d@f'.
Player 1 first writes a letter; € X, then Player 2 writes a lettés € Y, then Player 1 writes a letter € X,
and so on.
The two players alternatively write letteds of X for Player 1 and,, of Y for Player 2.
After w steps, Player 1 has written anworda € X* and Player 2 has written amwordb € Y*. Player 2 is
allowed to skip, even infinitely often, provided he reallyites anw-word inw steps.
Player 2 wins the play iff¢ € L < b € L'], i.e. iff :

[(ae Landbe L')or(a ¢ Landb ¢ L’ and b is infinite)].

Recall that a strategy for Player 1 is a function (Y U {s})* — X. And a strategy for Player 2 is a function
[ Xt —YU{s}

A strategyo is a winning stategy for Player 1 iff he always wins the playewline uses the strategyi.e. when
then'” letter he writes is given by,, = o(b, - - - b,,_1), whereb; is the letter written by Player 2 at the steand
b; = s if Player 2 skips at the step A winning strategy for Player 2 is defined in a similar manner

Martin's Theorem states that every Gale-Stewart gé&B), whereB is a Borel set, is determined, see [15].
This implies the following determinacy result:

Theorem 2.4(Wadge)Let . C X“ and L’ C Y*“ be two Borel sets, wher& andY are finite alphabets.
Then the Wadge gami& (L, L') is determined: one of the two players has a winning stratégy L <y, L’ iff
Player 2 has a winning strategy in the gamé&(L, L').

3 w-powers and sets of dictionaries
Recall that, fol” C X*, thew-language
VY =Aur-ug-up | Vi>1u; € V\{\}}
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4 O. Finkel: On some sets of dictionaries whas@owers have a given complexity

is thew-power of the language, or dictionafy,

A dictionary over the alphabet may be seen as an element of the sgiEeg i.e. the set of functions frony *

into 2, where2 = {0, 1} is a two letter alphabet. The spaz&” is naturally equipped with the product topology
of the discrete topology ot = {0, 1}. The setX* of finite words over the alphabéf is countable so there is a
bijection betweernX* andw and the topological spa@ " is in fact homeomorphic to the Cantor spate The
notions of Borel and projective hierarchies on the spgate are obtained in the same way as above in the case
of the Cantor spac&“.

Lecomte introduced in [1] the following sets of dictionaiéor a non null countable ordinglwe set
W(EP) ={AC2* | A¥is aX{-set},
W(ITY) ={AC2* | A¥is all¢-set},
W(AL) :={AC2* | A¥ is a Borel set.

Lecomte proved in [1] thaty(29) is in 33(22")\ IIJ and that all the other sel/ (), W(II?), andW(A])

are inX5(22")\ Do (29), whereD, (X9) is the class of-differences of open sets, that is, the class of sets which
are intersections of an open set and of a closed set. Finkdlecomte showed in [11] that for each countable
ordinal¢ > 3 the setsW(Eg) andW(Hg) are actuallyiTi-hard. This gives a much better lower bound on the
complexity of these sets, but their complexity is not cortgliedetermined.

Staiger gave in [5] a characterization of the BgtX{) (respectively)V(I19)). He gave in [5] an example of
a dictionaryV € W(X9 \ I1Y), and also an example of i@ € W(AY) \ W(X{ U I1}). We refer the reader
to [10, 11] for an example of & € W(X9 \ I19).

In this paper we show that the 98t(A1l) is more complex than the sB¥(X9). As an application we improve
the lower bound on the complexity of the 361 A1).

We have already mentioned in the introduction the existefieedictionaryL such that.* is 31-complete, and
hence non Borel. We now give a simple construction of sucmguagel. using the notion of substitution that
we now recall, (see [6] for more details).

A substitutionis defined by a mapping : X — P(Y™*), whereX = {a4,...,a,} andY are two finite
alphabets. For each integee [1;n], f(a;) = L; is a finitary language over the alphabét

Now this mapping is extended in the usual manner to finite wofda,, - --a;,) = L;, --- L;,, and to finitary
languaged. C X*: f(L) = Ugerf(z).

If for each integeri € [1;n] the languagd.; does not contain the empty word, then the mappfngay be
extended tav-words:

fla@)--xn)-) ={ur-un--- [ Viz 1 u; € f(x(i))}
and to w-languaged C X“ by settingf(L) = Ucr f(2).
Now let X = {0, 1}, d be a new letter not i, and
D={u-d-v|uveX*and|(|Jv] =2Ju]) or (Jv| =2u| +1)] }
Letg : X — P((X U {d})*) be the substitution defined laya) = a - D.

Notice that if V' is anw-power thery (V) = (¢g(V))* is also anu-power.
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If W = 0*-1thenW« = (0* - 1)¥ is the set ofw-words over the alphabeX containing infinitely many
occcurrences of the lettér It is a well known example of an-language which is &13-complete subset ot «.
One can prove thaty(1W))“ is 31-complete, and hence a non Borel set. This is done by redueitiys w-
language a well-known example of3a}-complete set: the set of infinite binary trees labelled i dtphabet
{0, 1} having an infinite branch in thES-complete set0*.1)~.

More generally it is proved in [6, proof of Theorem 4.5 andti&ec5] that if W« C X is anw-power which is
I19-hard, then thes-power(g(W))«* C (X U {d})“ is i-complete, and hence non Borel.

We use this result to prove our first proposition. In the sédoetwo setsA, B C 2X" we denoted < B iff
there is a continuous functiafl : 2%° — 2X" such thatd = H~'(B). So the relatiorx is in fact the Wadge
reducibility relation<yy .

Proposition 3.1 The following relation holds W(X9) < W(A}).

Proof. We shall use the substitutigrdefined above. Then lgt : X U {d} — P(X*) be the substitution
simply defined by’ (0) = {0- 1}, ¢’(1) = {0- 12}, andg’(d) = {0- 13}. And letG = ¢’ o g be the substitution
obtained by the composition gffollowed by ¢’. Then, for every dictionary’ C X*, the languagé& (V) is
also a dictionary over the alphab&tandG(V*) = (G(V))“. The substitutiorG will provide the reduction
G:2X" — 2X7,

Firstly, it is easy to see that the mappifig 2X~ — 2X" is continuous, [13].

Secondly, we claim that for every dictionaVy C X*, it holds that:

V e W(EY) ifand only if G(V) € W(AD).

Assume first that’ ¢ W(X9). By definition of W(X9) this means that’ is not aXJ-subset oR*. Then we
can infer from Hurewicz's Theorem, see [15, page 160], thedtpowerV* is I19-hard because it is an analytic
subset o2“ which is not ax9-set. Then it follows from [6, proof of Theorem 4.5 and Sectid that thes-power
(g(V))¥ C (X U{d})~ is =1-complete, and hence non Borel. It is now very easy to chggiyang the second
substitutiong’, that thew-power (G(V))* C X is also non Borel. This means th@{1") does not belong to
the setV(A1l).

Conversely assume now thete W(X9). By definition of W(X9) this means that’“ is a X9-subset ofx“,
i.e. is a countable union of closed séts C X“, n > 1. ThusV* = J -, F;, andG(V¥) = G(U,,», Fn) =

Un>1 G(Fn)
We are going to show that for every closed Bef. X*, it holds thaiG(F) is a Borel subset ok “.

LetthenF’ C X“ be a closed set. Then there is a tié€ X* such thatt” = [T, i.e. F is the set of the infinite
branches of’. We first prove thay(F') is Borel. For anyw-wordy € (X U {d})¥, it holds thaty € ¢(F) if and
only if there existr € F' and sequences,v; € X*, ¢ > 1, such that :

y=a(1) - (uy-d-v1)-2(2) (ug-d-va) -x(3)---
where for each integer> 1, (|v;| = 2|ui|) or (Jvi| = 2Jug| +1).
Let thenT; be the set of finite prefixes of suchwords in the sey(F’). The setl} C (X U {d})* is atree. We
claimthatg(F') = [T1] N ({0,1}* - d)“.
The inclusiory(F) C [Ty] N ({0,1}* - d)¥ is straightforward.

To prove the inverse inclusion, let us considecawordx € [T3] N ({0, 1}* - d)“.
Then for each integet > 1 there exists (at least) one finite sequef&g1<i<, € {0,1}" and one finite word
a1 - as -+ a, € X*and finite words:; andv; in X*, forl < i <n — 1, andu € X*, such that :
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6 O. Finkel: On some sets of dictionaries whas@owers have a given complexity

ay-(uy-d-v1)-ag-(ug-d-va)  -an-1(up-1-d-vp_1) an-u-dCx

where for each integére [1, n|, (|v;| = 2|u,|) iff &; = 0and (|v;] = 2|u;|+1)iff &, = 1,anda; -ag - - an—1 €
T.

Consider now all the “suitable” sequences)i<i<n, € {0,1}" defined as above. The set of these suitable
sequences is closed under prefix. Therefore this set formtaesuof({0, 1}*, C), which is finitely branching.
This tree is infinite so by Konig’'s Lemma it has an infinite teh. therefore there exists amfinite sequence
(ei)1<i<w € {0,1}* and one infinite wordiy - ag - ---a, --- € X* and finite wordsu; andv; in X*, for

1 < < w,suchthat:

I:al.(ul.d.vl).a2.(UQ.d.'UQ)...an(un.d.vn)...

where for each integer> 1, (Jv;| = 2|u,|) iff &; = 0and (Ju;| = 2|u;| + 1) iff e, = 1, anday -az---ap -+ - €
[T]=F.

This shows that € g(F).

Thusg(F) = [T1] N ({0,1}* - d)* is the intersection of the closed $&t] and of thel13-set({0, 1}* - d)~. Then
g(F) is a BorelII)-set, and it is easy to see th@({ F) is also Borel.
Assume now thal € W(X9), thenVv = U,>1 Fny WhereF,, C X¢ are closed sets. Thef(V)~ =

G(V¥) = G(U,>1 Fn) = U, > G(Fn) is a Borel subset ok, soG(V) belongs to the setV(Al). O

We can now improve the resultV (A1) € 21(22")\ Dy(X9) proved in [1].
Corollary 3.2 The following relation holds W(A}) € $1(22")\II9

Proof. It follows directly from the relationgV(X9) € X4(227)\ II andW(A}) € =3(2%"), proved by
Lecomte in [1], and from Propositidn 3.1 stating th&{x9) < W(AL). O

Remark 3.3 We have obtained only a slight improvement of Lecomte’s ltethat W(A}) € 33(227)\
D4 (%9). The question is still open of the exact complexity of the sets)V(A1l) andW(X9) (and also of the
other setsV(X?) andW(I1Y)).

However, Propositio@.l could provide a better improvenoéthe lower bound on the complexity ®9(A1)
as soon as a better improvement of the lower bound on the exitypdf V(X9) would be obtained. On the other
hand, if one could obtain a better upper bound on the contglekihe setV(A1), then this would provide, by
Propositiol, a better upper bound on the complexity @&tV (X9).

We consider now Boreb-powers. It has been proved in [7] that for each integer 1, there exist some-
powers of (context-free) languages which BFg-complete Borel sets. (We refer the reader for instance8b [1
for definitions and properties of context-free languag@&hgse results were obtained by the use of an operation
A — A% overw-languages which is a variant of Duparc’s operation of exgntiationA — A~, [19].

We first recall the definition of the operatioh— A™. Notice that this operation is defined over sets of finite
or infinite words, callectonciliating setsn [19].

Definition 3.4 (Duparc [19]) LetX be a finite alphabetk-¢ X, andz be a finite or infinite word over the
alphabet” = X U {«}.
Thenz“ is inductively defined by:
AT =,
and for a finite words € (X U {«})*:
(u-a)” =u“ -a,ifaeX,
(u- «=) = u* with its last letter removed ifu*"| > 0,
e (u«) " =u (1) - u(2) - u(Ju| = 1)if [u*| >0,
(ur «=)< = Xif Ju“| =0,
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and foru infinite:

(u) = limpe, (u[n]), where, giver3,, andv in X*,

v C limpey, By < InVp >0 By[[v]] = v.

(The finiteor infinite wordlim,, ¢, 3, is determined by the set of its (finite) prefixes).

Remark 3.5 Forz € Y=“, x*= denotes the string, once every— occuring inz has been “evaluated” to the
back space operation, proceeding from left to right ingidén other wordst“~ = = from which every interval
of the form“a « 7 (a € X) is removed. The letter- may be called an “eraser”.

For example ifu = (a «)", for n an integer> 1, oru = (a «)¥, oru = (a ««)“, then(u)< = A. If
u = (ab «)* then(u)“ = a* and ifu = bb(« a)¥ then(u)< =1b.

Let us notice that in Definitioh 3.4 the limit is not defined retusual way:

for example ifu = bb(« a)“ the finite wordu[n]* is alternatively equal té or to ba: more precisely[2n +
1]*" = b andu[2n + 2] = ba for every integem > 1 (it holds also that[1]“" = b andu[2]“ = bb). Thus
Definition 3.4 implies thalim,,c., (u[n])~ = b sou*" = b.

We can now define the operatign— A~ of exponentiation of conciliating sets
Definition 3.6 (Duparc [19]) Ford C X =¥ and«¢ X, let

AY =g {z € (X U{«})= |2 € A).

We now define the variamt — A~ of the operatio — A™.

Definition 3.7 ( [7]) Let X be a finite alphabek-¢ X, andx be a finite or infinite word over the alphabet
Y =X U{«}
Thenz*" is inductively defined by:
AT =,
and for a finite words € (X U {«})*:
(u-a)” =u"-qa,ifa e X,
(u- «=)~ = with its last letter removed ifu™| > 0,
(u- «=)~ is undefined ifu™| = 0,
and foru infinite:
()~ = limye,(uln])—, where, giver,, andv in X*,
v C limyey, Bn < 3InVp >0 By[|v]] = v.
The difference between the definitionsaof andz is that here we have added the convention that—)<
is undefined ifu™| = 0, i.e. when the last letter- can not be used as an eraser (because every letiiiri
has already been erased by some erasemaced inu). For example ifu =« (a «)¥ oru = a «« a* or
u = (a ««)¥, then(u)*" is undefined.

Definition 3.8 ForA C X =¥, A¥ = {x € (X U{«})=¢ |2~ € A}.

The operatiomd — A~ was used by Duparc in his study of the Wadge hierarchy, [18¢ rEsult stated in the
following lemma will be important in the sequel.

Lemma 3.9 Let X be a finite alphabet and. C X“. Then the twav-languagesl.™ and L~ are Wadge
equivalent, i.eL™ =y L7.

Proof. LetX be a finite alphabet anl C X“. We are going to prove thdt™ =y, L7, using Wadge
games.

a) In the Wadge gam®/ (L™, L™) the player in charge of™ has clearly a winning strategy which consists
in copying the play of the other player except if playesrites the erases but he has nothing to erase. In
this case playe? writes for example a letter € X and the erase+ at the next step of the play. Now if,
in w steps, playet has written thev-word o and player2 has written thevo-word 3, then it is easy to see
that[a = 5] and thenw € L™ iff 8 € L™. Thus player has a winning strategy in the Wadge game
W (L™, L7).
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b) Consider now the Wadge garfié(L~, L™~). The only extra possibility for playelrr in charge ofL” is to
get out of the sefL.™ by writing the erase# when in fact there is no letter of his previous play to erasé. B
then his final play is surely outside™. If this happens at some point of the play, then playaray writes
the erasek— forever. Then, aftew steps, playe2 has written an infinite worgi such that3“ = A. In
particular,G“ ¢ L becauses“ is not an infinite word, an@ ¢ L™~. On the other hand playérhas written
an infinite worda such thatv™ is undefined, hence ¢ L~. Therefore playe? wins the play in this case
too, and player 2 has a winning strategy in the Wadge game~, L™).

O

The operatiord — A is very useful in the study ab-powers because it can be defined with the notion of
substitution and preserves thepowers of finitary languages. L&y = {w € (X U{«})* |w™ = A}. Ly isa
context free (finitary) language generated by the contegt@rammar with the following productions, aS «
S) with a € X; and(S, \).
Then, for eachv-languaged C X, thew-languaged™ C (X U {«})¥ is obtained by substituting id the
languagel; - a for each lettern € X. This implies that the operatioA — A~ preserves the-powers of
finitary languages. This is stated in the following lemma.

Lemma 3.10( [7]) LetX be a finite alphabet and lét be the substitution defined bya) = L, - a for every
lettera € X.
If A =V for some languag® C X*, thenA~ = h(V¥) = (h(V))¥. Thus, ifA is anw-power, thenA™ is
also anw-power.

We now recall the operatioA — A® used by Duparc in his study of the Wadge hierarchy, [19]. o X =¥
andb a letter not inX, A’ is thew-language oveX U {b} which is defined by :

A ={z e (X U{b})¥ | z(/b) € A}
wherex(/b) is the sequence obtained frarwhen removing every occurrence of the letter

We can now state the following lemma.
Lemma 3.11 Let X be a finite alphabet having at least two elements dnd X*.

1. For each integek > 2, A is aII?-subset ofX “ iff A®is aII{-subset of X U {b})~.
2. For each integek > 3, A is aX)-subset of{“ iff A® is aX?-subset of X U {b})~.

Proof. We denote by > the set of infinite words itt.X U {b})* having infinitely many letters iiX. The set
7> ={z e (X U{b})*|=z(/b) € X“} is awell known example dfI$-subset of X U {b}), [15, 16]. Notice
that Z>°, equipped with the induced topology, is a topological salespof the Cantor spad¢& U {b})~. One
can define the Borel hierarchy on the topological spéateas in the case of the Cantor space, see [15, page 68].
Then one can prove by induction that, for each non-null cabietordinaky, the 30 (respectivelyII?)-subsets
of Z* are the intersections &° (respectivelyIT!)-subsets of X U {b})~ with the setZ>°, see [15, page 167].

Let now¢ be the function fronZ > into X* defined byg(z) = x(/b). Itis easy to see that, for eachC X,

it holds that¢—!(A) = AP. On the other hand, the functiahis continuous. Thus the inverse image of an
open (respectively, closed) subsetXf is an open (respectively, closed) subseZ6f. And one can prove by
induction that, for each non-null countable ordinathe inverse image of X (respectivelyI1?)-subset ofX'“

is aX! (respectivelyI1?)-subset o2, i.e. the intersection of . (respectivelyI1?)-subset of X U {b})~
with the setZ*°.

Letnowk > 2 andA C X“ be aII{-subset ofX“. Then¢~1(4) = A’ is aIl)-subset of ofZ>, i.e.

the intersection of 419-subset of( X U {b})* with the setZ>°. But Z* is aIl}-subset of( X U {b})* thus
¢~ 1(A) = A is the intersection of tw@I)-subsets of X U {b})“, hence also &I{-subset of X U {b})~.
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In a similar way we prove that # > 3 andA C X“ is aX{-subset ofX“, then¢—1(A) = A’ is aX?-subset
of (X U{b})~.

Conversely assume that for some intelger 2 andA C X the setd’ is aIl)-subset of X U{b})“. Notice that
X« is aclosed subset ¢ U {b})“. ThusA = A® N X* is the intersection of tw@I}-subsets of X U {b})~,
hence also &1)-subset of X U {b})“. And A = AN X* so A is also al1)-subset ofX*.

In a similar way we prove that if for some integer> 3 andA C X“ the setd’ is aX?-subset of X U {b})*,
thenA is also ax{-subset ofX . O

Lemma 3.12 Let X be a finite alphabet having at least two elements dnd X“.
1. For each integei: > 3, Ais aX)-subset ofX“ iff A~ isa X ,-subset of X U {«})«.

2. For each integek > 2, Ais aII)-subset ofX “ iff A~ is aIl} ,-subset of X U {«})~.

Proof. LetX be a finite alphabet having at least two elemedts; X*, andk > 3 be an integer. Then the
following equivalences hold:

Aex

—— AP € 30 by Lemmd3.1}1.

«—— Ab <y B’ for someB C X=* such thatB® is £)-complete.

— (A™)® <y (B™)" by [19, Proposition 23].

— (A~ e 30, becaus¢B™~)" is X7 | -complete by [19, Lemma 31].
— A~ e X9 | by Lemmg[3.11.

—— A® € 29| by Lemmd[3.

In a very similar way we prove that if > 2 is an integer, ther € I} iff A~ € Hgﬂ. O

We now state the following result about the clasgedTy).
Proposition 3.13 For each integei > 2 it holds that: W (IT)) < W(II} ;).

Proof. We shall use the substitutibrdefined above.
Letthenh’ : {0,1, «} — P({0,1}*) be the substitution simply defined by(0) = {0- 1}, /(1) = {0 - 1%},
andh’(«) = {0-13}. And let H = h’ o h be the substitution obtained by the compositiork dbllowed by 7’
Then, for every dictionary’ C X* = {0, 1}*, the languagé{ (V) is also a dictionary over the alphab€tand
H(V¥) = (H(V)). The substitutiorf will provide the reductiorfl : 2X" — 2%,

It is easy to see that the mappiff: 2% — 2X" is continuous, [13].
We claim that for every dictionary’ C X*, it holds thatl” € W(ILY) if and only if H(V) € W(II)_,).

Firstly by definition of the clas®V(I19) it holds that for every dictionary’ C X*, V is in the classV(I19) iff
V¢ is all)-set. By Lemmd 3.32V“ is aII)-set iff (V¥)~ is aII)_ ,-set. But(V¥)~ = h(V¥) = h(V).
ThusV is in the clas/V (1Y) iff k(V)* is in the clasdI)_ . Itis now easy to see, using the codighat this
is equivalent to the assertioiff (V))« is in the clasd1}  ,", i.e. H(V) isin the classV(II} ;). O

In a very similar manner, we can prove the following resuttatithe set3V(X?) for integers > 3.
Proposition 3.14 For each integel: > 3 it holds that: W(X)) < W(X) ;).
Remark 3.15 Notice that heré: > 3 because fol, C X“ then L may be in the clas&$ while L’ C
(X U{b})~is notin the clas&). Forinstancd = {0,1}* C {0, 1}* is open and closed hence also in the class

9. But thew-languagéd.® is simply the set of.--words over the alphab¢0, 1, b} which contain infinitely many
letters0 or 1 and it is al13-complete, hence noBY, subset of 0, 1, b}~.
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4  Concluding remarks

Lecomte proved that for every countable ordigal> 2 (respectivelys > 3), W(II2) € £3(2%)\ Dy(X9)
(respectively)V(3?) € »1(227)\ D2(X9)). Finkel and Lecomte proved that for every countable ofdjna 3,

the set9V(IT7) andW(%?) are actuallyT}-hard. The exact complexity of the setg(IT¢) andWW(3?) is still
unknown, but our new results could help to determine it.

Acknowledgements. Thanks to Dominique Lecomte and to the anonymous refereesi®iul comments on a
preliminary version of this paper.
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