Discrete convolution operators in positive characteristic: a variation on the Floquet-Bloch Theory - Archive ouverte HAL
Chapitre D'ouvrage Année : 2011

Discrete convolution operators in positive characteristic: a variation on the Floquet-Bloch Theory

Mikhail Zaidenberg

Résumé

The classical Floquet theory deals with Floquet-Bloch solutions of periodic PDEs (see e.g., P. Kuchment. Floquet Theory for Partial Differential Equations. Basel: Birkhauser, 1993). Peter Kuchment developed as well a discrete version of this theory for difference vector equations on lattices, including the Floquet theory on infinite periodic graphs. Here we propose a variation on this theory for matrix convolution operators acting on vector functions on lattices with values in a field of positive characteristic.
Fichier principal
Vignette du fichier
FK2.pdf (232.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00424782 , version 1 (17-10-2009)
hal-00424782 , version 2 (29-04-2010)

Identifiants

Citer

Mikhail Zaidenberg. Discrete convolution operators in positive characteristic: a variation on the Floquet-Bloch Theory. Mark Agranovsky et al. Contemporary Mathematics, 554, American Mathematical Society, Bar-Ilan University, pp.265-284, 2011, Complex Analysis and Dynamical Systems IV: General relativity, geometry, and PDE. ⟨hal-00424782v2⟩
93 Consultations
148 Téléchargements

Altmetric

Partager

More