Bounding the eigenvalues of the Laplace-Beltrami operator on compact submanifolds
Résumé
We give upper bounds for the eigenvalues of the La-place-Beltrami operator of a compact $m$-dimensional submanifold $M$ of $\R^{m+p}$. Besides the dimension and the volume of the submanifold and the order of the eigenvalue, these bounds depend on either the maximal number of intersection points of $M$ with a $p$-plane in a generic position (transverse to $M$), or an invariant which measures the concentration of the volume of $M$ in $\R^{m+p}$. These bounds are asymptotically optimal in the sense of the Weyl law. On the other hand, we show that even for hypersurfaces (i.e., when $p=1$), the first positive eigenvalue cannot be controlled only in terms of the volume, the dimension and (for $m\ge 3$) the differential structure.
Domaines
Géométrie métrique [math.MG]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...