Bounding the eigenvalues of the Laplace-Beltrami operator on compact submanifolds - Archive ouverte HAL
Article Dans Une Revue Bulletin of the London Mathematical Society Année : 2010

Bounding the eigenvalues of the Laplace-Beltrami operator on compact submanifolds

Bruno Colbois
  • Fonction : Auteur
  • PersonId : 829299
Emily B. Dryden
  • Fonction : Auteur
  • PersonId : 838246

Résumé

We give upper bounds for the eigenvalues of the La-place-Beltrami operator of a compact $m$-dimensional submanifold $M$ of $\R^{m+p}$. Besides the dimension and the volume of the submanifold and the order of the eigenvalue, these bounds depend on either the maximal number of intersection points of $M$ with a $p$-plane in a generic position (transverse to $M$), or an invariant which measures the concentration of the volume of $M$ in $\R^{m+p}$. These bounds are asymptotically optimal in the sense of the Weyl law. On the other hand, we show that even for hypersurfaces (i.e., when $p=1$), the first positive eigenvalue cannot be controlled only in terms of the volume, the dimension and (for $m\ge 3$) the differential structure.
Fichier principal
Vignette du fichier
LMS_revisions-final.pdf (202 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00420689 , version 1 (29-09-2009)

Identifiants

Citer

Bruno Colbois, Emily B. Dryden, Ahmad El Soufi. Bounding the eigenvalues of the Laplace-Beltrami operator on compact submanifolds. Bulletin of the London Mathematical Society, 2010, 42 (1), pp.96--108. ⟨10.1112/blms/bdp100⟩. ⟨hal-00420689⟩
4576 Consultations
472 Téléchargements

Altmetric

Partager

More