On the first k moments of the random count of a pattern in a multi-states sequence generated by a Markov source - Archive ouverte HAL
Article Dans Une Revue Journal of Applied Probability Année : 2010

On the first k moments of the random count of a pattern in a multi-states sequence generated by a Markov source

Résumé

In this paper, we develop an explicit formula allowing to compute the first k moments of the random count of a pattern in a multi-states sequence generated by a Markov source. We derive efficient algorithms allowing to deal both with low or high complexity patterns and either homogeneous or heterogenous Markov models. We then apply these results to the distribution of DNA patterns in genomic sequences where we show that moment-based developments (namely: Edgeworth's expansion and Gram-Charlier type B series) allow to improve the reliability of common asymptotic approximations like Gaussian or Poisson approximations.
Fichier principal
Vignette du fichier
pattern_moments_hal.pdf (214.09 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00419038 , version 1 (22-09-2009)

Identifiants

Citer

Grégory Nuel. On the first k moments of the random count of a pattern in a multi-states sequence generated by a Markov source. Journal of Applied Probability, 2010, 47 (4), pp.1105-1123. ⟨hal-00419038⟩
99 Consultations
86 Téléchargements

Altmetric

Partager

More