Strongly dissimilar vortex-liquid regimes in single-crystalline NdFeAs(O,F) and (Ba,K)Fe2As2: A comparative study
Résumé
The extent of the vortex-liquid state in underdoped single crystals of the oxypnictide superconductors NdFeAs(O,F) and (Ba,K)Fe2As2 is investigated using specific heat (C-p) and Hall-probe magnetization experiments. In both materials, the vortex liquid lies entirely in the regime where the three-dimensional lowest Landau-level (3D-LLL) approximation is valid and both systems present a very small shift in the specific heat anomaly with increasing field. The irreversibility line, defined as the onset of diamagnetic response, is very rapidly shifted toward lower temperatures in NdFeAs(O,F) but remains close to the C-p anomaly in (Ba,K)Fe2As2. These measurements strongly suggest that a vortex-liquid phase occupies a large portion of the mixed-state phase diagram of NdFeAs(O,F) but not in (Ba,K)Fe2As2. This difference can be attributed to different Ginzburg numbers Gi, the latter being about 100 times larger in NdFeAs(O,F) than in (Ba,K)Fe2As2. The angular dependence of the upper critical field, derived from 3D-LLL scaling of the irreversibility lines, presents deviations from the standard 3D effective-mass model in both materials with an anisotropy being about three times smaller in (Ba,K)Fe2As2 (gamma similar to 2.5) than in Nd(F,O)FeAs (gamma similar to 7.5).