On the S-labeling Problem - Archive ouverte HAL
Communication Dans Un Congrès Année : 2009

On the S-labeling Problem

Résumé

Let G be a graph of order n and size m. A labeling of G is a bijective mapping theta : V(G) --> 1, 2...n, and we call Theta(G) the set of all labelings of G. For any graph G and any labeling theta in Theta(G), let SL(G,theta) = sum_{ e in E(G)} min(theta(u) : u \in e). In this paper, we consider the S-Labeling problem, defined as follows: Given a graph G, and a labeling (G) that minimizes SL(G,Theta). The S-Labeling problem has been shown to be NP-complete [Via06]. We prove here basic properties of any optimal S-labeling of a graph G, and relate it to the Vertex Cover problem. Then, we derive bounds for SL(G,Theta), and we give approximation ratios for different families of graphs. We nally show that the S-Labeling problem is polynomial-time solvable for split graphs.
Fichier principal
Vignette du fichier
EUROCOMB09.pdf (90.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00416570 , version 1 (15-09-2009)

Identifiants

  • HAL Id : hal-00416570 , version 1

Citer

Guillaume Fertin, Stéphane Vialette. On the S-labeling Problem. Proc. 5th Euroconference on Combinatorics, Graph Theory and Applications (EUROCOMB 2009), 2009, Bordeaux, France. pp.273-277. ⟨hal-00416570⟩
192 Consultations
101 Téléchargements

Partager

More