Local time of a diffusion in a stable Lévy environment - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2009

Local time of a diffusion in a stable Lévy environment

Résumé

We consider a one-dimensional diffusion in a stable Lévy environment. We show that the normalized local time process refocused at the bottom of the standard valley with height $\log t$, $(L_X(t,\mathfrak m_{\log t}+x)/t,x\in \R)$, converges in law to a functional of two independent Lévy processes conditioned to stay positive. To prove this result, we show that the law of the standard valley is close to a two-sided Lévy process conditioned to stay positive. We also obtain the limit law of the supremum of the normalized local time. This result has been obtained by Andreoletti and Diel in the case of a Brownian environment.
Fichier principal
Vignette du fichier
article_voisin_diel.pdf (294.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00416452 , version 1 (14-09-2009)
hal-00416452 , version 2 (13-05-2010)
hal-00416452 , version 3 (05-08-2010)

Identifiants

Citer

Roland Diel, Guillaume Voisin. Local time of a diffusion in a stable Lévy environment. 2009. ⟨hal-00416452v3⟩
218 Consultations
113 Téléchargements

Altmetric

Partager

More