Smooth regularization of bang-bang optimal control problems - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Automatic Control Année : 2010

Smooth regularization of bang-bang optimal control problems

Résumé

Consider the minimal time control problem for a single-input control-affine system $\dot{x}=X(x) + u_1 Y_1 (x)$ in $\R^{n}$, where the scalar control $u_1(\cdot)$ satisfies the constraint $|u_1(\cdot)| \leq 1$. When applying a shooting method for solving this kind of optimal control problem, one may encounter numerical problems due to the fact that the shooting function is not smooth whenever the control is bang-bang. In this article we propose the following smoothing procedure. For $\varepsilon > 0$ small, we consider the minimal time problem for the control system $\displaystyle \dot{x} = X(x) + u_1^{\varepsilon} Y_1(x)+ \varepsilon \sum_{i=2}^m u_i^{\varepsilon} Y_i \left(x\right)$, where the scalar controls $u_i^\varepsilon(\cdot)$, $i=1,\ldots, m$, with $m \geq 2$, satisfy the constraint $\displaystyle \sum_{i=1}^m \left(u_i^{\varepsilon}(t) \right)^2 \leq 1$. We prove, under appropriate assumptions, a strong convergence result of the solution of the regularized problem to the solution of the initial problem.
Fichier principal
Vignette du fichier
reg.pdf (299.09 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00414680 , version 1 (09-09-2009)
hal-00414680 , version 2 (16-12-2009)
hal-00414680 , version 3 (19-02-2010)

Identifiants

  • HAL Id : hal-00414680 , version 3

Citer

Cristiana J. Silva, Emmanuel Trélat. Smooth regularization of bang-bang optimal control problems. IEEE Transactions on Automatic Control, 2010, 55 (11), pp.2488--2499. ⟨hal-00414680v3⟩
272 Consultations
1244 Téléchargements

Partager

More