Design optimization of parallel manipulators for high-speed precision machining applications
Résumé
The paper proposes an integrated approach to the design optimization of parallel manipulators, which is based on the concept of the workspace grid and utilizes the goal-attainment formulation for the global optimization. To combine the non-homogenous design specification, the developed optimization technique transforms all constraints and objectives into similar performance indices related to the maximum size of the prescribed shape workspace. This transformation is based on the dedicated dynamic programming procedures that satisfy computational requirements of modern CAD. Efficiency of the developed technique is demonstrated via two case studies that deal with optimization of the kinematical and stiffness performances for parallel manipulators of the Orthoglide family.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...