Pré-Publication, Document De Travail Année : 2009

Large Deviations estimates for some non-local equations. General bounds and applications

Résumé

Large deviation estimates for the following linear parabolic equation are studied: \[ \frac{\partial u}{\partial t}=\tr\Big( a(x)D^2u\Big) + b(x)\cdot D u + \int_{\R^N} \Big\{(u(x+y)-u(x)-(D u(x)\cdot y)\ind{|y|<1}(y)\Big\}\d\mu(y)\,, \] where $\mu$ is a Lévy measure (which may be singular at the origin). Assuming only that some negative exponential integrates with respect to the tail of $\mu$, it is shown that given an initial data, solutions defined in a bounded domain converge exponentially fast to the solution of the problem defined in the whole space. The exact rate, which depends strongly on the decay of $\mu$ at infinity, is also estimated.
Fichier principal
Vignette du fichier
Largedev-Brandle-Chasseigne.pdf (452.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00414225 , version 1 (08-09-2009)
hal-00414225 , version 2 (08-09-2009)

Identifiants

Citer

Cristina Brändle, Emmanuel Chasseigne. Large Deviations estimates for some non-local equations. General bounds and applications. 2009. ⟨hal-00414225v1⟩
222 Consultations
77 Téléchargements

Altmetric

Partager

More