Poisson-Pinsker factor and infinite measure preserving group actions - Archive ouverte HAL
Article Dans Une Revue Proceedings of the American Mathematical Society Année : 2010

Poisson-Pinsker factor and infinite measure preserving group actions

Résumé

We solve the question of the existence of a Poisson-Pinsker factor for conservative ergodic infinite measure preserving action of a countable amenable group by proving the following dichotomy: either it has totally positive Poisson entropy (and is of zero type), or it possesses a Poisson-Pinsker factor. If G is abelian and the entropy positive, the spectrum is absolutely continuous (Lebesgue countable if G=\mathbb{Z}) on the whole L^{2}-space in the first case and in the orthocomplement of the L^{2}-space of the Poisson-Pinsker factor in the second.
Fichier principal
Vignette du fichier
PinskerPoisson3HAL.pdf (147.85 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00414147 , version 1 (08-09-2009)

Identifiants

Citer

Emmanuel Roy. Poisson-Pinsker factor and infinite measure preserving group actions. Proceedings of the American Mathematical Society, 2010, 138 (06), pp.2087-2094. ⟨hal-00414147⟩
138 Consultations
82 Téléchargements

Altmetric

Partager

More