Spherical gradient manifolds - Archive ouverte HAL Access content directly
Journal Articles Annales de l'Institut Fourier Year : 2010

Spherical gradient manifolds

Abstract

Nous étudions l'action d'un groupe réel-réductif $G=K\exp(\lie{p})$ sur une sous-variété réel-analytique $X$ d'une variété kählérienne $Z$. Nous supposons que l'action de $G$ peut être prolongée à une action holomorphe du groupe complexifié $G^\mbb{C}$ telle que l'action d'un sous-groupe maximal compact de $G^\mbb{C}$ soit hamiltonienne. L'application moment $\mu$ induit une application gradient $\mu_\lie{p}\colon X\to\lie{p}$. Nous montrons que $\mu_\lie{p}$ separe les orbites de $K$ si et seulement si un sous-groupe minimal parabolique de $G$ possède une orbite ouverte dans $X$. Ce résultat généralise la charactérisation de Brion des variétés kählériennes sphériques qui admettent une application moment.
Fichier principal
Vignette du fichier
SphericalGradientManifolds_MiebachStoetzel-270809_.pdf (227.83 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00413074 , version 1 (03-09-2009)

Identifiers

Cite

Christian Miebach, Henrik Stoetzel. Spherical gradient manifolds. Annales de l'Institut Fourier, 2010, 60 (6), pp.2235-2260. ⟨10.5802/aif.2582⟩. ⟨hal-00413074⟩
105 View
146 Download

Altmetric

Share

Gmail Facebook X LinkedIn More