Probing non-perturbative QCD through hadronic matrix elements extracted from exclusive hard processes
Résumé
QCD is the theory of strong interactions and non-perturbative methods have been developed to address the confinement property of QCD. Many experimental measurements probe the confining dynamics, and it is well-known that hard scattering processes allow the extraction of non perturbative hadronic matrix elements. To study exclusive hard processes, such as electromagnetic form factors and reactions like gamma* N -> gamma N', gamma* N -> pi N', gamma* gamma -> pi pi, antiproton proton ->gamma* pi in particular kinematics (named as generalized Bjorken regime), one introduces specific non-perturbative objects, namely generalized parton distributions (GPDs), distribution amplitudes (DA) and transition distribution amplitudes (TDA), which are Fourier transformed non-diagonal matrix elements of non-local operators on the light-cone. We review here a selected sample of exclusive amplitudes in which the quark and gluon content of hadrons is probed, and emphasize that much remains to be done to successfully compute their non-perturbative parts. We present some difficulties with respect to the application of the much publicized AdS-QCD approach to the calculation of these partonic quantities.