Further Variations on the Six Exponentials Theorem. - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 2005

Further Variations on the Six Exponentials Theorem.

Michel Waldschmidt
  • Fonction : Auteur
  • PersonId : 862020

Résumé

According to the Six Exponentials Theorem, a $2\times 3$ matrix whose entries $\lambda_{ij}$ ($i=1,2$, $j=1,2,3$) are logarithms of algebraic numbers has rank $2$, as soon as the two rows as well as the three columns are linearly independent over the field $\BbbQ$ of rational numbers. The main result of the present note is that one at least of the three $2\times 2$ determinants, viz. $$ \lambda_{21}\lambda_{12}-\lambda_{11}\lambda_{22}, \quad \lambda_{22}\lambda_{13}-\lambda_{12}\lambda_{23}, \quad \lambda_{23}\lambda_{11}-\lambda_{13}\lambda_{21} $$ is transcendental.
Fichier principal
Vignette du fichier
HRJ2005.pdf (198.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00411308 , version 1 (27-08-2009)

Identifiants

Citer

Michel Waldschmidt. Further Variations on the Six Exponentials Theorem.. Hardy-Ramanujan Journal, 2005, Volume 28 - 2005, pp.1-9. ⟨10.46298/hrj.2005.86⟩. ⟨hal-00411308⟩
111 Consultations
588 Téléchargements

Altmetric

Partager

More