Transcendence of periods: the state of the art - Archive ouverte HAL
Article Dans Une Revue Pure and Applied Mathematics Quarterly Année : 2006

Transcendence of periods: the state of the art

Michel Waldschmidt
  • Fonction : Auteur
  • PersonId : 862020

Résumé

The set of real numbers and the set of complex numbers have the power of continuum. Among these numbers, those which are ``interesting'', which appear ``naturally'', which deserve our attention, form a countable set. Starting from this point of view we are interested in the periods as defined by M.~Kontsevich and D.~Zagier. We give the state of the art on the question of the arithmetic nature of these numbers: to decide whether a period is a rational number, an irrational algebraic number or else a transcendental number is the object of a few theorems and of many conjectures. We also consider the approximation of such numbers by rational or algebraic numbers.
Fichier principal
Vignette du fichier
TranscendencePeriodsFinal.pdf (282.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00411301 , version 1 (27-08-2009)

Identifiants

  • HAL Id : hal-00411301 , version 1

Citer

Michel Waldschmidt. Transcendence of periods: the state of the art. Pure and Applied Mathematics Quarterly, 2006, 2 (2), pp.435-463. ⟨hal-00411301⟩
275 Consultations
862 Téléchargements

Partager

More