Sequential Quantile Prediction of Time Series - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2009

Sequential Quantile Prediction of Time Series

Résumé

Motivated by a broad range of potential applications, we address the quantile prediction problem of real-valued time series. We present a sequential quantile forecasting model based on the combination of a set of elementary nearest neighbor-type predictors called ``experts'' and show its consistency under a minimum of conditions. Our approach builds on the methodology developed in recent years for prediction of individual sequences and exploits the quantile structure as a minimizer of the so-called pinball loss function. We perform an in-depth analysis of real-world data sets and show that this nonparametric strategy generally outperforms standard quantile prediction methods
Fichier principal
Vignette du fichier
biaupatra.pdf (655.53 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00410120 , version 1 (17-08-2009)
hal-00410120 , version 2 (12-05-2010)

Identifiants

Citer

Gérard Biau, Benoît Patra. Sequential Quantile Prediction of Time Series. 2009. ⟨hal-00410120v1⟩
224 Consultations
464 Téléchargements

Altmetric

Partager

More