Multiplicative Bias Corrected Nonparametric Smoothers - Archive ouverte HAL
Chapitre D'ouvrage Année : 2018

Multiplicative Bias Corrected Nonparametric Smoothers

Résumé

The paper presents a multiplicative bias reduction estimator for nonparametric regression. The approach consists to apply a multiplicative bias correction to an oversmooth pilot estimator. In Burr et al. [2010], this method has been tested to estimate energy spectra. For such data set, it was observed that the method allows to decrease bias with negligible increase in variance. In this paper, we study the asymptotic properties of the resulting estimate and prove that this estimate has zero asymptotic bias and the same asymptotic variance as the local linear estimate. Simulations show that our asymptotic results are available for modest sample sizes.
Fichier principal
Vignette du fichier
revision3.pdf (241.54 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00408696 , version 1 (31-07-2009)
hal-00408696 , version 2 (15-10-2009)
hal-00408696 , version 3 (28-02-2011)

Identifiants

Citer

Nicolas Hengartner, Eric Matzner-Løber, Laurent Rouvière, Thomas Burr. Multiplicative Bias Corrected Nonparametric Smoothers. Nonparametric statistics, Springer proceedings in Mathematics and Statistics, 3rd ISNPS, Avignon, 2016., 2018, ⟨10.1007/978-3-319-96941-1_3⟩. ⟨hal-00408696v3⟩
399 Consultations
218 Téléchargements

Altmetric

Partager

More