Covering the whole space with Poisson random balls - Archive ouverte HAL
Article Dans Une Revue ALEA : Latin American Journal of Probability and Mathematical Statistics Année : 2012

Covering the whole space with Poisson random balls

Hermine Biermé
  • Fonction : Auteur
  • PersonId : 946725
Anne Estrade
  • Fonction : Auteur
  • PersonId : 841265

Résumé

We consider Poisson random balls, with the pair (center, radius) being given by a Poisson point process. According to the intensity measure of the Poisson process, we investigate the eventuality of covering the whole space with the union of the balls. We exhibit a disjunction phenomenon between the coverage with large balls (low frequency) and the coverage with small balls (high frequency). Concerning the second type of coverage, we prove the existence of a critical regime which separates the case where coverage occurs a.s. and the case where coverage does not occur a.s. We give an explicit value of the critical intensity and we prove that the Hausdorff measure of the set of points which are not covered by the union of balls is linked with this value. We also compare with other critical regimes appearing in continuum percolation.
Fichier principal
Vignette du fichier
bierme_estrade_2010.pdf (180.59 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00406965 , version 1 (23-07-2009)
hal-00406965 , version 2 (04-07-2010)
hal-00406965 , version 3 (16-07-2010)

Identifiants

  • HAL Id : hal-00406965 , version 3

Citer

Hermine Biermé, Anne Estrade. Covering the whole space with Poisson random balls. ALEA : Latin American Journal of Probability and Mathematical Statistics, 2012, IX, pp.213--229. ⟨hal-00406965v3⟩
319 Consultations
421 Téléchargements

Partager

More