Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities - Archive ouverte HAL
Article Dans Une Revue Proceedings of the National Academy of Sciences of the United States of America Année : 2010

Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities

Résumé

The goal of this note is to state the optimal decay rate for solutions of the nonlinear fast diffusion equation and, in self-similar variables, the optimal convergence rates to Barenblatt self-similar profiles and their generalizations. It relies on the identification of the optimal constants in some related Hardy-Poincaré inequalities and concludes a long series of papers devoted to generalized entropies, functional inequalities and rates for nonlinear diffusion equations.
Fichier principal
Vignette du fichier
BDGV-150709Final.pdf (192.54 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00404718 , version 1 (17-07-2009)

Identifiants

Citer

Matteo Bonforte, Jean Dolbeault, Gabriele Grillo, Juan-Luis Vázquez. Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107 (38), pp.16459-16464. ⟨10.1073/pnas.1003972107⟩. ⟨hal-00404718⟩
120 Consultations
182 Téléchargements

Altmetric

Partager

More