On Compact Encoding of Pagenumber $k$ Graphs - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2008

On Compact Encoding of Pagenumber $k$ Graphs

Résumé

In this paper we show an information-theoretic lower bound of kn - o(kn) on the minimum number of bits to represent an unlabeled simple connected n-node graph of pagenumber k. This has to be compared with the efficient encoding scheme of Munro and Raman of 2kn + 2m + o(kn+m) bits (m the number of edges), that is 4kn + 2n + o(kn) bits in the worst-case. For m-edge graphs of pagenumber k (with multi-edges and loops), we propose a 2mlog2k + O(m) bits encoding improving the best previous upper bound of Munro and Raman whenever m ≤ 1 / 2kn/log2 k. Actually our scheme applies to k-page embedding containing multi-edge and loops. Moreover, with an auxiliary table of o(m log k) bits, our coding supports (1) the computation of the degree of a node in constant time, (2) adjacency queries with O(logk) queries of type rank, select and match, that is in O(logk *minlogk / loglogm, loglogk) time and (3) the access to δ neighbors in O(δ) runs of select, rank or match;.
Fichier principal
Vignette du fichier
1019-3443-1-PB.pdf (193.04 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-00402218 , version 1 (13-06-2014)

Identifiants

Citer

Cyril Gavoille, Nicolas Hanusse. On Compact Encoding of Pagenumber $k$ Graphs. Discrete Mathematics and Theoretical Computer Science, 2008, Vol. 10 no. 3 (3), pp.23-34. ⟨10.46298/dmtcs.436⟩. ⟨hal-00402218⟩
182 Consultations
735 Téléchargements

Altmetric

Partager

More