Convergence to steady states for radially symmetric solutions to a quasilinear degenerate diffusive Hamilton-Jacobi equation - Archive ouverte HAL
Article Dans Une Revue Asymptotic Analysis Année : 2010

Convergence to steady states for radially symmetric solutions to a quasilinear degenerate diffusive Hamilton-Jacobi equation

Résumé

Convergence to a single steady state is shown for non-negative and radially symmetric solutions to a diffusive Hamilton-Jacobi equation with homogeneous Dirichlet boundary conditions, the diffusion being the $p$-Laplacian operator, $p\ge 2$, and the source term a power of the norm of the gradient of $u$. As a first step, the radially symmetric and non-increasing stationary solutions are characterized.
Fichier principal
Vignette du fichier
GBPhLCS020709.pdf (248.34 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00401442 , version 1 (03-07-2009)

Identifiants

Citer

Guy Barles, Philippe Laurençot, Christian Stinner. Convergence to steady states for radially symmetric solutions to a quasilinear degenerate diffusive Hamilton-Jacobi equation. Asymptotic Analysis, 2010, 67 (3-4), pp.229--250. ⟨10.3233/ASY-2010-0981⟩. ⟨hal-00401442⟩
278 Consultations
141 Téléchargements

Altmetric

Partager

More