Influence of nanodispersed hydrotalcite on polypropylene photooxidation
Résumé
Nanocomposites containing hydrotalcite and prepared by melt compounding with polypropylene were UV-light irradiated in artificial accelerated conditions representative of solar irradiation (λ > 300 nm) at 60 °C in air. The chemical modifications resulting from photooxidation were followed by IR and UV-visible spectroscopies. The presence of hydrotalcite was shown to change the global rate of photooxidation of polypropylene by reducing the oxidation induction time and increasing the oxidation rate. The differences of the oxidation induction time disappeared after solvent extraction of the antioxidant. They were attributed to a quenching of the antioxidant activity resulting from a migration onto the filler surface induced by the preferential interaction with the polar hydrotalcite. Extracting the antioxidant did not change the oxidation rate at the permanent regime. The increase of the oxidation rate was attributed to transition metal ions, present as impurities in hydrotalcite, which can accelerate the oxidation of the polymer by various mechanisms including a catalysed decomposition of hydroperoxides.