Spectral Properties of Probes Containing Benzothioxanthene Chromophore linked with Hindered Amine in Solution and in polymer Matrices
Résumé
Absorption and emission spectroscopy as well as laser flash photolysis was employed in order to characterize the spectral properties of novel probes based on benzothioxantheneimide chromophore covalently linked with different types of sterically hindered amines. These were chosen as 2-(2,2,6,6-tetramethyl-4- piperidyl)-thioxantheno[2,1,9-dej]isoquinoline-1,3-dione (BTXINH), the equivalent stable nitroxyl radical, i.e. 2-(1-oxo-2,2,6,6-tetramethyl-4- piperidyl)thioxantheno[2,1,9dej]isoquinoline 1,3-dione (BTXINO) and the alkoxy derivative 2-(1-(1'-phenylethoxy)-2,2,6,6-tetramethyl-4-piperidyl)- thioxantheno[2,1,9-dej]isoquinoline-1,3-dione (BTXINOR). Spectral properties, in solutions and in various polymer matrices such as polystyrene, polymethyl methacrylate, polyvinyl chloride and polypropylene, were compared with the compound 2-(1-dodecyl)-thioxantheno[2,1,9-dej]isoquinoline-1,3-dione (BTXID) taken in the present study as a reference compound. By means of the fluorescence decay and in the contrary to three other probes, BTXINO probe clearly showed a biexponential decay while the three other probes led to monoexponential decay. Two different singlet excited states with lifetimes of about 0.4 and 5 ns were proposed. They correspond to two dispositions of the nitroxyl radical chain above and along the fluorescent moiety of the molecule. Such behaviour depends on the surrounding media. Moreover, an efficient intramolecular quenching of the fluorescence emission was only observed with the short lived singlet excited state. The ratio BTXID/BTXINO was found equal to about 4 and 9 in solutions and polymer matrices respectively. Laser flash photolysis indicated that the novel probes as well as the model compound yielded transient absorption with maximum at 530 nm, corresponding to the triplet states. The intermolecular quenching of such species by molecular oxygen and by free N-oxyl, such as 1-oxy-2,2,6,6-teramethylpiperidine (TEMPO) and 1-oxy-2,2,6,6-teramethyl-4- hydroxypiperidine (TEMPOL), and the intramolecular quenching was not efficient.