Pré-Publication, Document De Travail Année : 2009

Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result

Guy Barles
Sepideh Mirrahimi
Benoît Perthame

Résumé

We study two equations of Lotka-Volterra type that describe the Darwinian evolution of a population density. In the first model a Laplace term represents the mutations. In the second one we model the mutations by an integral kernel. In both cases, we use a nonlinear birth-death term that corresponds to the competition between the traits leading to selection. In the limit of rare or small mutations, we prove that the solution converges to a sum of moving Dirac masses. This limit is described by a constrained Hamilton-Jacobi equation. This was already proved in [8] for the case with a Laplace term. Here we generalize the assumptions on the initial data and prove the same result for the integro-differential equation.
Fichier principal
Vignette du fichier
R09013.pdf (217.08 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00391982 , version 1 (05-06-2009)

Identifiants

  • HAL Id : hal-00391982 , version 1

Citer

Guy Barles, Sepideh Mirrahimi, Benoît Perthame. Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result. 2009. ⟨hal-00391982⟩
426 Consultations
182 Téléchargements

Partager

More