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Concentration in Lotka-Volterra parabolic or integral equations:

a general convergence result

Guy Barles∗, Sepideh Mirrahimi†, Benôıt Perthame †‡

March 26, 2009

Abstract

We study two equations of Lotka-Volterra type that describe the Darwinian evolution of a
population density. In the first model a Laplace term represents the mutations. In the second one
we model the mutations by an integral kernel. In both cases, we use a nonlinear birth-death term
that corresponds to the competition between the traits leading to selection.
In the limit of rare or small mutations, we prove that the solution converges to a sum of moving
Dirac masses. This limit is described by a constrained Hamilton-Jacobi equation. This was already
proved in [8] for the case with a Laplace term. Here we generalize the assumptions on the initial
data and prove the same result for the integro-differential equation.

Key-Words: Adaptive evolution, Lotka-Volterra equation, Hamilton-Jacobi equation, viscosity solu-
tions, Dirac concentrations.

AMS Class. No: 35B25, 35K57, 47G20, 49L25, 92D15

1 Introduction

We continue the study, initiated in [8], of the asymptotic behavior of Lotka-Volterra parabolic equa-
tions. The model we use describes the dynamics of a population density. Individuals respond differently
to the environment, i.e. they have different abilities to use the environment resources. To take this
fact into account, population models can be structured by a parameter, representing a physiological
trait, denoted by x ∈ R

d below. We denote by n(t, x) the density of trait x. The mathematical
modeling in accordance with Darwin’s theory consists of natural selection and mutations between the
traits (see [18, 24, 27, 25] for literature in adaptive evolution). We represent the growth and death
rates of the phenotypical traits by R(x, I). The term I(t) is an ecological parameter that corresponds
to a nutrient that itself depends on the population. We use two different models for mutations. The
simpler way is to represent them by a Laplacian.

{

∂tnǫ − ǫ△nǫ = nǫ

ǫ
R(x, Iǫ(t)), x ∈ R

d, t ≥ 0,

nǫ(t = 0) = n0
ǫ ∈ L1(Rd), n0

ǫ ≥ 0,
(1)
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Iǫ(t) =

∫

Rd

ψ(x)nǫ(t, x)dx. (2)

Here ǫ is a small term that we introduce to consider only rare mutations. It is also used to re-scale
time to consider a much larger time than a generation scale.

A more natural way to model mutations is to use an integral term instead of a Laplacian.

{

∂tnǫ = nǫ

ǫ
R(x, Iǫ(t)) + 1

ǫ

∫

1
ǫd
K(y−x

ǫ
) b(y, Iǫ)nǫ(t, y) dy, x ∈ R

d, t ≥ 0,

nǫ(t = 0) = n0
ǫ ∈ L1(Rd), n0

ǫ ≥ 0,
(3)

Iǫ(t) =

∫

Rd

nǫ(t, x)dx. (4)

Such models can be derived from individual based stochastic processes in the limit of large popula-
tions (see [13, 14]).

In this paper, we study the asymptotic behavior of equations (1)-(2) and (3)-(4) when ǫ vanishes.
Our purpose is to show that under some assumptions on R(x, I), nǫ(t, x) concentrates as a sum of
Dirac masses that are traveling. In biological terms, at every moment one or several dominant traits
coexist while other traits disappear. The dominant traits change in time due to the presence of mu-
tations.

We use the same assumptions as [8]. We assume that there exist two constants ψm, ψM such that

0 < ψm < ψ < ψM <∞, ψ ∈W 2,∞(Rd). (5)

We also assume that there are two constants 0 < Im < IM <∞ such that

min
x∈Rd

R(x, Im) = 0, max
x∈Rd

R(x, IM ) = 0, (6)

and there exists constants Ki > 0 such that, for any x ∈ R
d, I ∈ R,

−K1 ≤ ∂R

∂I
(x, I) ≤ −K−1

1 < 0, (7)

sup
Im
2

≤I≤2IM

‖ R(·, I) ‖W 2,∞(Rd)< K2. (8)

We also make the following assumptions on the initial data

Im ≤
∫

Rd

ψ(x)n0
ǫ (x) ≤ IM , and ∃A, B > 0 , n0

ǫ ≤ e
−A|x|+B

ǫ . (9)

Here we take ψ(x) ≡ 1 for equations (3)-(4) because replacing n by ψn leaves the model unchanged.
For equation (3) we assume additionally that the probability kernel K(z) and the mutation birth rate
b(z) verify

0 ≤ K(z),

∫

K(z) dz = 1,

∫

K(z)e|z|
2
dz <∞, (10)
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bm ≤ b(z, I) ≤ bM , |∇xb(z, I)| < L1 b(z, I), |b(x, I1) − b(x, I2)| < L2|I1 − I2|, (11)

where bm, bM , L1 and L2 are constants. Finally for equation (3) we replace (6) and (7) by

min
x∈Rd

[

R(x, Im) + b(x, Im)
]

= 0, max
x∈Rd

[

R(x, IM ) + b(x, IM )
]

= 0, (12)

|R(x, I1) −R(x, I2)| < K3|I1 − I2| and −K4 ≤ ∂(R+ b)

∂I
(x, I) ≤ −K−1

4 < 0, (13)

where K3 and K4 are positive constants.

In both cases, in the limit we expect n(t, x) = 0 or R(x, I) = 0, where n(t, x) is the weak limit of
nǫ(t, x) as ǫ vanishes. Since the latter is possible at only isolated points, we expect n to concentrate
as Dirac masses. Following earlier works on the similar issue [19, 7, 8, 28], in order to study n, we

make a change of variable nǫ(t, x) = e
uǫ(t,x)

ǫ . It is easier to study the asymptotic behavior of uǫ instead
of nǫ. In section 5 we study the asymptotic behavior of uǫ while ǫ vanishes. We show that uǫ, after
extraction of a subsequence, converge to a function u that satisfies a constrained Hamilton-Jacobi
equation in the viscosity sense (see [3, 20, 16, 22] for general introduction to the theory of viscosity
solutions). Our main results are as follows.

Theorem 1.1. Assume (5)-(9). Let nǫ be the solution of (1)-(2), and uǫ = ǫ ln(nǫ). Then, after
extraction of a subsequence, uǫ converges locally uniformly to a function u ∈ C((0,∞)×R

d), a viscosity
solution to the following equation:







∂tu = |∇u|2 +R(x, I(t)),

max
x∈Rd

u(t, x) = 0, ∀t > 0,
(14)

Iǫ(t) −→
ǫ→0

I(t) a.e.,

∫

ψ(x)n(t, x)dx = I(t) a.e.. (15)

In particular, a.e. in t, supp n(t, ·) ⊂ {u(t, ·) = 0}. Here the measure n is the weak limit of nǫ as ǫ
vanishes. If additionally (u0

ǫ )ǫ is a sequence of uniformly continuous functions which converges locally
uniformly to u0 then u ∈ C([0,∞) × R

d) and u(0, x) = u0(x) in R
d.

Theorem 1.2. Assume (8)-(13), and (u0
ǫ )ǫ is a sequence of uniformly bounded functions in W 1,∞

which converges locally uniformly to u0. Let nǫ be the solution of (3)-(4), and uǫ = ǫ ln(nǫ). Then,
after extraction of a subsequence, uǫ converges locally uniformly to a function u ∈ C([0,∞) × R

d), a
viscosity solution to the following equation:















∂tu = R(x, I(t)) + b(x, I(t))
∫

K(z)e∇u·zdz,

max
x∈Rd

u(t, x) = 0, ∀t > 0,

u(0, x) = u0(x),

(16)

Iǫ(t) −→
ǫ→0

I(t) a.e.,

∫

n(t, x)dx = I(t) a.e.. (17)

In particular, a.e. in t, supp n(t, ·) ⊂ {u(t, ·) = 0}. As above, the measure n is the weak limit of nǫ
as ǫ vanishes.
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These theorems improve previous results proved in [19, 8, 7, 29] in various directions. For the
case where mutations are described by a Laplace equation, i.e. (1)-(2), Theorem 1.1 generalizes the
assumptions on the initial data. This generalization derives from regularizing effects of Eikonal hamil-
tonian (see [26, 1, 2]). But our motivation is more in the case of equations (3)-(4) where mutations
are described by an integral operator. Then we can treat cases where the mutation rate b(x, I) really
depends on x, which was not available until now. The difficulty here is that Lipschitz bounds on the
initial data are not propagated on uǫ and may blow up in finite time (see [12, 5, 15] for regularity
results for integral hamiltonian). However, we achieve to control the Lipschitz norm by −uǫ, that goes
to infinity as |x| goes to +∞.

We do not discuss the uniqueness for equations (14) and (16) in this paper. The latter is studied,
for some particuler cases, in [8, 7].

A related, but different, situation arises in reaction-diffusion equations as in combustion (see [6, 9,
10, 21, 23, 30]). A typical example is the Fisher-KPP equation, where the solution is a progressive
front. The dynamics of the front is described by a level set of a solution of a Hamilton-Jacobi equation.

The paper is organized as follows. In section 2 we state some existence results and bounds on nǫ
and Iǫ. In section 3 we prove some regularity results for uǫ corresponding to equations (1)-(2). We
show that uǫ are locally uniformly bounded and continuous. In section 4 we prove some analogous
regularity results for uǫ corresponding to equations (3)-(4). Finally, in section 5 we describe the
asymptotic behavior of uǫ and deduce the constrained Hamilton-Jacobi equation (14)-(15).

2 Preliminary results

We recall the following existence results for nǫ and a priori bounds for Iǫ (see also [8, 17]).

Theorem 2.1. With the assumptions (5)-(8), and Im − Cǫ2 ≤ Iǫ(0) ≤ IM + Cǫ2, there is a unique
solution nǫ ∈ C(R+;L1(Rd)) to equations (1)-(2) and it satisfies

I ′m = Im − Cǫ2 ≤ Iǫ(t) ≤ IM + Cǫ2 = I ′M , (18)

where C is a constant. This solution, nǫ(t, x), is nonnegative for all t ≥ 0.

We recall a proof of this theorem in Appendix A. We have an analogue result for equations (3)-(4):

Theorem 2.2. With the assumptions (8), (10)-(13), and Im ≤ Iǫ(0) ≤ IM , there is a unique solution
nǫ ∈ C(R+;L1 ∩ L∞(Rd)) to equations (3)-(4) and it satisfies

Im ≤ Iǫ(t) ≤ IM . (19)

This solution, nǫ(t, x), is nonnegative for all t ≥ 0.

This theorem can be proved with similar arguments as Theorem 2.1. A uniform BV bound on Iǫ(t)
for equations (1)-(2) is also proved in [8]:

Theorem 2.3. With the assumptions (5)-(9), we have additionally to the uniform bounds (18), the
locally uniform BV and sub-Lipschitz bounds

d

dt
Iǫ(t) ≥ −ǫC + e

−Lt
ǫ

∫

ψ(x)n0
ǫ (x)

R(x, I0
ǫ )

ǫ
dx, (20)
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d

dt
̺ǫ(t) ≥ −Ct+

∫

(1 + ψ(x))n0
ǫ (x)

R(x, I0
ǫ )

ǫ
dx, (21)

where C and L are positive constants and ̺ǫ(t) =
∫

Rd nǫ(t, x)dx. Consequently, after extraction of a
subsequence, Iǫ(t) converges a.e. to a function I(t), as ǫ goes to 0. The limit I(t) is nondecreasing as
soon as there exists a constant C independent of ǫ such that

∫

ψ(x)n0
ǫ (x)

R(x, I0
ǫ )

ǫ
≥ −Ce

o(1)
ǫ .

We also have a local BV bound on Iǫ(t) for equations (3)-(4):

Theorem 2.4. With the assumptions (8)-(13), we have additionally to the uniform bounds (19), the
locally uniform BV bound

d

dt
Iǫ(t) ≥ −C ′ + e

−L′t
ǫ

∫

n0
ǫ (x)

R(x, I0
ǫ ) + b(x, I0

ǫ )

ǫ
dx, (22)

∫ T

0
| d
dt
Iǫ(t)|dt ≤ 2C ′T + C ′′, (23)

where C ′, C ′′ and L′ are positive constants. Consequently, after extraction of a subsequence, Iǫ(t)
converges a.e. to a function I(t), as ǫ goes to 0.

This theorem is proved in Appendix B.

3 Regularity results for equations (1)-(2)

In this section we study the regularity properties of uǫ = ǫ lnnǫ, where nǫ is the unique solution of
equations (1)-(2). We have

∂tnǫ =
1

ǫ
∂tuǫ e

uǫ
ǫ , ∇nǫ =

1

ǫ
∇uǫ e

uǫ
ǫ , △nǫ =

(1

ǫ
△uǫ +

1

ǫ2
|∇uǫ|2

)

e
uǫ
ǫ .

Consequently uǫ is a smooth solution to the following equation

{

∂tuǫ − ǫ△uǫ = |∇uǫ|2 +R(x, Iǫ(t)), x ∈ R, t ≥ 0,

uǫ(t = 0) = ǫ lnn0
ǫ .

(24)

We have the following regularity results for uǫ.

Theorem 3.1. Let T > 0 be given. Then uǫ < D2, where D = B + (A2 + K2)T , and we define
vǫ =

√
2D2 − uǫ. With the assumptions (5)-(9), for all t0 > 0 vǫ are locally uniformly bounded and

Lipschitz in [t0, T ] × R
d ,

|∇vǫ| ≤ C(T ) +
1

2
√
t0
, (25)

where C(T ) is a constant depending on T , K1, K2, A and B. Moreover, if we assume that (u0
ǫ )ǫ is a

sequence of uniformly continuous functions, then uǫ are locally uniformly bounded and continuous in
[0,∞[×R

d.

We prove Theorem 3.1 in several steps. We first prove an upper bound, then a regularizing effect
in x, then local L∞ bounds, and finally a regularizing effect in t.
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3.1 An upper bound for uǫ

From assumption (9) we have u0
ǫ (x) ≤ −A|x| +B. We claim that, with C = A2 +K2,

uǫ(t, x) ≤ −A|x| +B + Ct, ∀t ≥ 0. (26)

Define φ(t, x) = −A|x| +B + Ct. We have

∂tφ− ǫ△φ− |∇φ|2 −R(x, Iǫ(t)) ≥ C + ǫ
A(d− 1)

|x| −A2 −K2 ≥ 0.

Here K2 is an upper bound for R(x, I) according to (8). We have also φ(0, x) = −A|x|+B ≥ u0
ǫ (x).

So φǫ is a super-solution to (24) and (26) is proved.

3.2 Regularizing effect in space

Let u = f(v), where f is chosen later. We have

∂tu = f ′(v)∂tv, ∂xu = f ′(v)∂xv, △u = f ′(v)△v + f ′′(v)|∇v|2.

So equation (24) becomes

∂tv − ǫ△v −
[

ǫ
f ′′(v)

f ′(v)
+ f ′(v)

]

|∇v|2 =
R(x, I)

f ′(v)
. (27)

Define p = ∇v. By differentiating (27) we have

∂tpi − ǫ△pi − 2

[

ǫ
f ′′(v)

f ′(v)
+ f ′(v)

]

∇v · ∇pi −
[

ǫ
f ′′′(v)

f ′(v)
− ǫ

f ′′(v)2

f ′(v)2
+ f ′′(v)

]

|∇v|2pi

= − f ′′(v)

f ′(v)2
R(x, I)pi +

1

f ′(v)

∂R

∂xi
.

We multiply the equation by pi and sum over i:

∂t
|p|2
2

− ǫ
∑

(△pi)pi − 2

[

ǫ
f ′′(v)

f ′(v)
+ f ′(v)

]

∇v · ∇|p|2
2

−
[

ǫ
f ′′′(v)

f ′(v)
− ǫ

f ′′(v)2

f ′(v)2
+ f ′′(v)

]

|p|4

= − f ′′(v)

f ′(v)2
R(x, I)|p|2 +

1

f ′(v)
∇xR · p.

First, we compute
∑

i(△pi)pi.

∑

i

(△pi)pi =
∑

i

△p2
i

2
−

∑

|∇pi|2

= △|p|2
2

−
∑

|∇pi|2

= |p|△|p| + |∇|p||2 −
∑

i

|∇pi|2.
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We also have

|∇|p||2 =
∑

i

|p · ∂xi
p|2

|p|2 ≤
∑

i

|∂xi
p|2 =

∑

i,j

|∂xi
pj |2 =

∑

j

|∇pj |2.

It follows that

∑

i

(△pi)pi ≤ |p|△|p|.

We deduce

∂t|p| − ǫ△|p| − 2

[

ǫ
f ′′(v)

f ′(v)
+ f ′(v)

]

p · ∇|p| −
[

ǫ
f ′′′(v)

f ′(v)
− ǫ

f ′′(v)2

f ′(v)2
+ f ′′(v)

]

|p|3 (28)

≤ − f ′′(v)

f ′(v)2
R(x, I)|p| + 1

f ′(v)
∇xR · p|p| .

From (26) we know that, for 0 ≤ t ≤ T , uǫ ≤ D(T )2, where D(T ) =
√
B + CT . Then we define

f(v) = −v2 + 2D2, for v positive, and thus

D(T ) < v,

f ′(v) = −2v, and | 1

f ′(v)
| =

1

2v
<

1

2D
,

f ′′(v) = −2, and | f
′′(v)

f ′(v)2
| =

1

2v2
<

1

2D2
,

f ′′′(v) = 0, −
[

ǫ
f ′′′(v)

f ′(v)
− ǫ

f ′′(v)2

f ′(v)2
+ f ′′(v)

]

= 2 + ǫ
1

v2
> 2.

From (28), assumption (8) and these calculations we deduce

∂|p|
∂t

− ǫ△|p| − 2

[

ǫ
f ′′(v)

f ′(v)
+ f ′(v)

]

p · ∇|p| + 2|p|3 − K2

2D2
|p| − K2

2D
≤ 0.

Thus for θ(T ) large enough we can write

∂|p|
∂t

− ǫ△|p| − 2

[

ǫ
f ′′(v)

f ′(v)
+ f ′(v)

]

p · ∇|p| + 2(|p| − θ)3 ≤ 0. (29)

Define the function
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y(t, x) = y(t) =
1

2
√
t

+ θ.

Since y is a solution to (29), and y(0) = ∞ and |p| being a sub-solution we have

|p|(t, x) ≤ y(t, x) =
1

2
√
t

+ θ.

Thus for vǫ =
√

2D2 − uǫ, we have

|∇vǫ|(t, x) ≤
1

2
√
t

+ θ(T ), 0 < t ≤ T. (30)

3.3 Regularity in space of uǫ near t = 0

Assume that u0
ǫ are uniformly continuous. We show that uǫ are uniformly continuous in space on

[0, T ] × R
d.

For δ > 0 we prove that for h small |uǫ(t, x + h) − uǫ(t, x)| < δ. To do so define wǫ(t, x) =
uǫ(t, x + h) − uǫ(t, x). Since u0

ǫ are uniformly continuous, for h small enough |wǫ(0, x)| < δ
2 . Besides

wǫ satisfies the following equation:

∂twǫ(t, x) − ǫ△wǫ(t, x) − (∇uǫ(t, x+ h) + ∇uǫ(t, x)) · ∇wǫ(t, x) = R(x+ h, Iǫ(t)) −R(x, Iǫ(t)).

Using assumption (8) we have

∂twǫ(t, x) − ǫ△wǫ(t, x) − (∇uǫ(t, x+ h) + ∇uǫ(t, x)) · ∇wǫ(t, x) ≤ K2|h|.
Therefore by the maximum principle we arrive at

max
Rd

|wǫ(t, x)| < max
Rd

|wǫ(0, x)| +K2|h|t.

So for h small enough |uǫ(t, x+ h) − uǫ(t, x)| < δ on [0, T ] × R
d.

3.4 Local bounds for uǫ

We show that uǫ are bounded on compact subsets of ]0,∞[×R
d. We already know from section 3.1 that

uǫ is locally bounded from above. We show that it is also bounded from below on C = [t0, T ]×B(0, R),
for all R > 0 and 0 < t0 < T .

From section 3.1 we have uǫ(t, x) ≤ −A|x| + B + CT . So for ǫ < ǫ0, ǫ0 small enough and R large
enough

∫

|x|>R
e

uǫ
ǫ dx <

∫

|x|>R
e

−A|x|+B+CT

ǫ dx <
I ′m

2ψM
.

We have also from (18) that
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∫

Rd

e
uǫ
ǫ dx >

I ′m
ψM

.

We deduce that for all 0 < ǫ < ǫ0 and R large enough

∫

|x|<R
e

uǫ
ǫ dx >

I ′m
2ψM

.

Therefore there exists ǫ1 > 0 such that, for all ǫ < ǫ1

∃x0 ∈ R
d; |x0| < R, uǫ(t, x0) > −1, thus vǫ(t, x0) <

√

2D2 + 1.

From Section 3.2 we know that vǫ are locally uniformly Lipschitz

|vǫ(t, x+ h) − vǫ(t, x)| <
(

C(T ) +
1

2
√
t0

)

|h|,

Thus for all (t, x) ∈ C and ǫ < ǫ1

vǫ(t, x) < E(t0, T, R) :=
√

2D2(T ) + 1 + 2
(

C(T ) +
1

2
√
t0

)

R.

It follows that

uǫ(t, x) > 2D2(T ) − E2(t0, T, R).

We conclude that uǫ are uniformly bounded from below on C.

If we assume additionally that u0
ǫ are uniformly continuous, with similar arguments we can show

that uǫ are bounded on compact subsets of [0,∞[×R
d. To prove the latter we use uniform continuity

of uǫ instead of the Lipschitz bounds of vǫ.

3.5 Regularizing effect in time

From the above uniform bounds and continuity results we can also deduce uniform continuity in time
i.e. for all η > 0, there exists θ > 0 such that for all (t, s, x) ∈ [0, T ] × [0, T ] × B(0, R2 ), such that
0 < t− s < θ, and for all ǫ < ǫ0 we have:

|uǫ(t, x) − uǫ(s, x)| ≤ η′.

We prove this with the same method as of Lemma 9.1 in [4] (see also [11] for another proof of this
claim). We prove that for any η > 0, we can find positive constants A, B large enough such that, for
any x ∈ B(0, R2 ) and for every ǫ < ǫ0

uǫ(t, y) − uǫ(s, x) ≤ η +A|x− y|2 +B(t− s), for every (t, y) ∈ [0, T ] × B(0, R), (31)

and
uǫ(t, y) − uǫ(s, x) ≥ −η −A|x− y|2 −B(t− s), for every (t, y) ∈ [0, T ] × B(0, R). (32)

We prove inequality (31), the proof of (32) is analogous. We fix (s, x) in [0, T [×B(0, R2 ). Define

ξ(t, y) = uǫ(s, x) + η +A|y − x|2 +B(t− s), (t, y) ∈ [s, T [×B(0, R),
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where A and B are constants to be determined. We prove that, for A and B large enough, ξ is a
super-solution to (24) on [s, T ]×B(0, R) and ξ(t, y) > uǫ(t, y) for (t, y) ∈ {s}×B(0, R)∪[s, T ]×∂B(0, R).

According to section 3.4, uǫ are locally uniformly bounded, so we can take A a constant such that
for all ǫ < ǫ0,

A ≥
8 ‖ uǫ ‖L∞([0,T ]×B(0,R))

R2
.

With this choice, ξ(t, y) > uǫ(t, y) on ∂B(0, R)× [0, T ], for all η, B and x ∈ B(0, R2 ). Next we prove
that, for A large enough, ξ(s, y) > uǫ(s, y) for all y ∈ B(0, R). We argue by contradiction. Assume
that there exists η > 0 such that for all constants A there exists yA,ǫ ∈ B(0, R) such that

uǫ(s, yA,ǫ) − uǫ(s, x) > η +A|yA,ǫ − x|2. (33)

It follows that

|yA,ǫ − x| ≤
√

2M

A
,

where M is a uniform upper bound for ‖ uǫ ‖L∞([0,T ]×B(0,R)). Now let A → ∞. Then for all ǫ,
|yA,ǫ − x| → 0. According to Section 3.3, uǫ are uniformly continuous on space. Thus there exists
h > 0 such that if |yA,ǫ−x| ≤ h then |uǫ(s, yA,ǫ)−uǫ(s, x)| < η

2 , for all ǫ. This is in contradiction with
(33). Therefore ξ(s, y) > uǫ(s, y) for all y ∈ B(0, R). Finally, noting that R is bounded we deduce
that for B large enough, ξ is a super-solution to (24) in [s, T ]×B(0, R). Since uǫ is a solution of (24)
we have

uǫ(t, y) ≤ ξ(t, y) = uǫ(s, x) + η +A|y − x|2 +B(t− s) for all (t, y) ∈ [s, T ] × B(0, R).

Thus (31) is satisfied for t ≥ s. We can prove (32) for t ≥ s analogously. Then we put x = y and
we conclude.

4 Regularity results for equations (3)-(4)

In this section we study the regularity properties of uǫ = ǫ lnnǫ, where nǫ is the unique solution of
equations (3)-(4) as given in Theorem 2.2. From equation (3) we deduce that uǫ is a solution to the
following equation

{

∂tuǫ = R(x, Iǫ(t)) +
∫

K(z)b(x+ ǫz, Iǫ)e
uǫ(t,x+ǫz)−uǫ(t,x)

ǫ dz, x ∈ R, t ≥ 0,

uǫ(t = 0) = ǫ lnn0
ǫ .

(34)

We have the following regularity results for uǫ.

Theorem 4.1. Define vǫ = nǫǫ = exp(uǫ), where nǫ is the solution to equations (3)-(4). With the
assumptions (8)-(13), and if we assume that (u0

ǫ )ǫ is a sequence of uniformly bounded functions in
W 1,∞, then uǫ are locally uniformly bounded and Lipschitz in [0,∞[×R

d.

As in section 3 we prove Theorem 4.1 in several steps. We first prove an upper and a lower bound
on uǫ, then local Lipschitz bounds in space and finally a regularity result in time.
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4.1 Upper and lower bounds on uǫ

From assumption (9) we have u0
ǫ (x) ≤ −A|x| +B. As in section 3.1 we claim that

uǫ(t, x) ≤ −A|x| +B + Ct, ∀t ≥ 0. (35)

Define v(t, x) = −A|x| +B + Ct, where C = bM
∫

K(z)eA|z|dz +K2. Using (7) and (11) we have

∂tv −R(x, Iǫ(t)) −
∫

K(z)b(x+ ǫz, Iǫ)e
v(t,x+ǫz)−v(t,x)

ǫ dz ≥ C −K2 − bM

∫

K(z)eA|z|dz ≥ 0.

We also have v(0, x) = −A|x| + B ≥ u0
ǫ (x). So v is a supersolution to (34). Since (3) verifies the

comparison property, equation (34) verifies also the comparison property, i.e. if u and v are respec-
tively super and subsolutions of (34) then v ≤ u. Thus (35) is proved.

To prove a lower bound on uǫ we assume that u0
ǫ are locally uniformly bounded. Then from equation

(34) and assumption (7) we deduce

∂tuǫ(t, x) ≥ −K2,

and thus

uǫ(t, x) ≥ −‖u0
ǫ‖L∞(B(0,R)) −K2t, ∀x ∈ B(0, R).

Moreover, |∇u0
ǫ | being bounded, we can give a lower bound in R

d

uǫ(t, x) ≥ inf
ǫ
u0
ǫ (0) − ‖∇u0

ǫ‖L∞ |x| −K2t, ∀x ∈ R
d. (36)

4.2 Lipschitz bounds

Here we assume that uǫ is differentiable in x (See [15]). See also Appendix C for a proof without any
regularity assumptions on uǫ.

Let pǫ = ∇uǫ · χ, where χ is a fixed unit vector. By differentiating (34) with respect to χ we obtain

∂tpǫ(t, x) = ∇R(x, Iǫ(t)) · χ+

∫

K(z)∇b(x+ ǫz, Iǫ) · χ e
uǫ(t,x+ǫz)−uǫ(t,x)

ǫ dz

+

∫

K(z)b(x+ ǫz, Iǫ)
pǫ(t, x+ ǫz) − pǫ(t, x)

ǫ
e

uǫ(t,x+ǫz)−uǫ(t,x)
ǫ dz.

Thus, using assumptions (8) and (11), we have

∂tpǫ(t, x) ≤ K2 + L1

∫

K(z)b(x+ ǫz, Iǫ)e
uǫ(t,x+ǫz)−uǫ(t,x)

ǫ dz (37)

+

∫

K(z)b(x+ ǫz, Iǫ)
pǫ(t, x+ ǫz) − pǫ(t, x)

ǫ
e

uǫ(t,x+ǫz)−uǫ(t,x)
ǫ dz.
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Define wǫ(t, x) = pǫ(t, x) + L1uǫ(t, x) and ∆ǫ(t, x, z) = uǫ(t,x+ǫz)−uǫ(t,x)
ǫ

. From (37) and (34) we
deduce

∂twǫ −K2(1 + L1) −
∫

K(z)b(x+ ǫz, Iǫ)
wǫ(t, x+ ǫz) − wǫ(t, x)

ǫ
e∆ǫ(t,x,z)dz

≤ 2L1

∫

K(z)b(x+ ǫz, Iǫ)e
∆ǫ(t,x,z)dz

− L1

∫

K(z)b(x+ ǫz, Iǫ)∆ǫ(t, x, z)e
∆ǫ(t,x,z)dz

= L1

∫

K(z)b(x+ ǫz, Iǫ)e
∆ǫ(t,x,z)

(

2 − ∆ǫ(t, x, z)
)

dz

≤ L1bMe,

noticing that e is the maximum of the function g(t) = et(2 − t) in R. Therefore by the maximum
principle, with C1 = K2(1 + L1) + L1bMe, we have

wǫ(t, x) ≤ C1t+ max
Rd

wǫ(0, x).

It follows that

pǫ(t, x) ≤ C1t+ ‖ ∇u0
ǫ ‖L∞ +L1(B + Ct) + L1

(

‖∇u0
ǫ‖L∞ |x| +K2t− u0

ǫ (x = 0)
)

(38)

= C2t+ C3|x| + C4,

where C2, C3 and C4 are constants. Since this bound is true for any |χ| = 1, we obtain a local bound
on |∇uǫ|.

4.3 Regularity in time

In section 4.2 we proved that uǫ is locally uniformly Lipschitz in space. From this we can deduce that
∂tuǫ is also locally uniformly bounded.

Let C = [0, T ]×B(x0, R) and S1 be a constant such that ‖ uǫ ‖L∞(C)< S1 for all ǫ > 0. Assume that

R′ is a constant large enough such that we have uǫ(t, x) < −S1 in [0, T ]×R
d\B(x0, R

′). According to
(35) there exists such constant R′. We choose a constant S2 such that ‖ ∇uǫ ‖L∞([0,T ]×B(x0,R′))< S2

for all ǫ > 0. We deduce

|∂tuǫ| ≤ |R(x, Iǫ(t))| +
∫

K(z)b(x+ ǫz, Iǫ)e
uǫ(t,x+ǫz)−uǫ(t,x)

ǫ

(

1|x+ǫz|<R′ + 1|x+ǫz|≥R′

)

dz

≤ K2 + bM

∫

K(z)eS2|z|1|x+ǫz|<R′dz + bM

∫

K(z)1|x+ǫz|≥R′dz

≤ K2 + bM
(

1 +

∫

K(z)eS2|z|dz
)

.

This completes the proof of Theorem 4.1.
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5 Asymptotic behavior of uǫ

Using the regularity results in sections 3 and 4, we can now describe the asymptotic behavior of uǫ
and prove Theorems 1.1 and 1.2. Here we prove Theorem 1.1. The proof of Theorem 1.2 is analogous,
except the limit of the integral term in equation (16). The latter has been studied in [19, 12, 7, 29].

Proof of theorem 1.1. step 1 (Limit) According to section 3, uǫ are locally uniformly bounded and
continuous. So by Arzela-Ascoli Theorem after extraction of a subsequence, uǫ converges locally uni-
formly to a continuous function u.

step 2 (Initial condition) We proved that if u0
ǫ are uniformly continuous then uǫ will be locally

uniformly bounded and continuous in [0, T ]×R
d. Thus we can apply Arzela-Ascoli near t = 0 as well.

Therefore we have u(0, x) = lim
ǫ→0

uǫ(0, x) = u0(x).

step 3
(

max
x∈Rd

u = 0
)

Assume that for some t, x we have 0 < a ≤ u(t, x). Since u is continuous

u(t, y) ≥ a
2 on B(x, r), for some r > 0. Thus we have nǫ(t, y) → ∞, while ǫ→ 0. Therefore Iǫ(t) → ∞

while ǫ→ 0. This is a contradiction with (18).

To prove that max
x∈Rd

u(t, x) = 0, it suffices to show that lim
ǫ→0

nǫ(t, x) 6= 0, for some x ∈ R
d. From (26)

we have
uǫ(t, x) ≤ −A|x| +B + Ct.

It follows that for M large enough

lim
ǫ→0

∫

|x|>M
nǫ(t, x)dx ≤ lim

ǫ→0

∫

|x|>M
e

−A|x|+B+Ct

ǫ = 0. (39)

From this and (18) we deduce

lim
ǫ→0

∫

|x|≤M
nǫ(t, x)dx >

I ′m
ψM

.

If u(t, x) < 0 for all |x| < M then lim
ǫ→0

e
uǫ(t,x)

ǫ = 0 and thus lim
ǫ→0

∫

|x|≤M nǫ(t, x)dx = 0. This is a

contradiction with (39). It follows that max
x∈Rd

u(t, x) = 0, ∀t > 0.

step 4 (supp n(t, ·) ⊂ {u(t, ·) = 0}) Assume that u(t0, x0) = −a < 0. Since uǫ are uniformly contin-
uous in a small neighborhood of (t0, x0), (t, x) ∈ [t0−δ, t0+δ]×B(x0, δ), we have uǫ(t, x) ≤ −a

2 < 0 for ǫ

small. We deduce that
∫

(t,x)∈[t0−δ,t0+δ]×B(x0,δ)
n(t, x)dtdx =

∫

(t,x)∈[t0−δ,t0+δ]×B(x0,δ)
lim
ǫ→0

e
uǫ(t,x)

ǫ dtdx = 0.

Therefore we have supp n(t, ·) ⊂ {u(t, ·) = 0}.

step 5 (Limit equation) Finally we recall, following [8], how to pass to the limit in the equation.
Since uǫ is a solution to (24), it follows that φǫ(t, x) = uǫ(t, x) −

∫ t

0 R(x, Iǫ(s))ds is a solution to the
following equation

∂tφǫ(t, x) − ǫ△φǫ(t, x) − |∇φǫ(t, x)|2 − 2∇φǫ(t, x) ·
∫ t

0
∇R(x, Iǫ(s))ds

= ǫ

∫ t

0
△R(x, Iǫ(s))ds+ |

∫ t

0
∇R(x, Iǫ(s))ds|2.
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Note that we have Iǫ(s) → I(s) for all s ≥ 0 as ǫ goes to 0, and on the other hand, the function
R(x, I) is smooth. It follows that we have the locally uniform limits

lim
ǫ→0

∫ t

0
R(x, Iǫ(s))ds =

∫ t

0
R(x, I(s))ds,

lim
ǫ→0

∫ t

0
∇R(x, Iǫ(s))ds =

∫ t

0
∇R(x, I(s))ds,

lim
ǫ→0

∫ t

0
△R(x, Iǫ(s))ds =

∫ t

0
△R(x, I(s))ds,

for all t ≥ 0. Moreover the functions
∫ t

0 R(x, I(s))ds,
∫ t

0 ∇R(x, I(s))ds and
∫ t

0 △R(x, I(s))ds are
continuous. According to step 1, uǫ(t, x) converge locally uniformly to the continuous function u(t, x)
as ǫ vanishes. Therefore φǫ(t, x) converge locally uniformly to the continuous function φ(t, x) =
u(t, x) −

∫ t

0 R(x, I(s))ds as ǫ vanishes. It follows that φ(t, x) is a viscosity solution to the equation

∂tφ(t, x) − |∇φ(t, x)|2 − 2∇φ(t, x) ·
∫ t

0
∇R(x, I(s))ds

= |
∫ t

0
∇R(x, I)ds|2.

In other words u(t, x) is a viscosity solution to the following equation

∂tu(t, x) = |∇u(t, x)|2 +R(x, I(t)).

A Proof of theorem 2.1

A.1 Existence

Let T > 0 be given and A be the following closed subset:

A = {u ∈ C
(

[0, T ], L1(Rd)
)

, u ≥ 0, ‖ u(t, ·) ‖L1≤ a},

where a =
(∫

n0
ǫdx

)

e
K2T

ǫ . Let Φ be the following application:

Φ : A → A

u 7→ v,

where v is the solution to the following equation
{

∂tv − ǫ△v = v
ǫ
R̄(x, Iu(t)), x ∈ R, t ≥ 0,

v(t = 0) = n0
ǫ .

(40)

Iu(t) =

∫

Rd

ψ(x)u(t, x)dx, (41)
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and R̄ is defined as below

R̄(x, I) =











R(x, I) if Im
2 < I < 2IM ,

R(x, 2IM ) if 2IM ≤ I,

R(x, Im2 ) if I ≤ Im
2 .

We prove that

(a) Φ defines a mapping of A into itself,

(b) Φ is a contraction for T small.

With these properties, we can apply the Banach-Picard fixed point theorem and iterate the con-
struction with T fixed.

Assume that u ∈ A. In order to prove (a) we show that v, the solution to (40), belongs to A. By
the maximum principle we know that v ≥ 0. To prove the L1 bound we integrate (40)

d

dt

∫

vdx =

∫

v

ǫ
R̄(x, Iu(t))dx ≤ 1

ǫ
max
x∈Rd

R̄(x, Iu(t))

∫

vdx ≤ K2

ǫ

∫

vdx,

and we conclude from the Gronwall Lemma that

‖ v ‖L1≤
(

∫

n0
ǫdx

)

e
K2T

ǫ = a.

Thus (a) is proved. It remains to prove (b). Let u1, u2 ∈ A, v1 = Φ(u1) and v2 = Φ(u2). We have

∂t(v1 − v2) − ǫ△(v1 − v2) =
1

ǫ

[

(v1 − v2)R̄(x, Iu1) + v2
(

R̄(x, Iu1) − R̄(x, Iu2)
)]

.

Noting that ‖ v2 ‖L1≤ a, and |R̄(x, Iu1) − R̄(x, Iu2)| ≤ K1|Iu1 − Iu2 | ≤ K1ψM ‖ u1 − u2 ‖L1 we
obtain

d

dt
‖ v1 − v2 ‖L1≤ K2

ǫ
‖ v1 − v2 ‖L1 +

2aK1ψM

ǫ
‖ u1 − u2 ‖L1 .

Using v1(0, ·) = v2(0, ·) we deduce

‖ v1 − v2 ‖L∞
t L1

x
≤ 2aK1ψM

K2
(e

K2T

ǫ − 1) ‖ u1 − u2 ‖L∞
t L1

x
.

Thus, for T small enough such that e
K2T

ǫ (e
K2T

ǫ − 1) < K2

4K1ψM

R

n0
ǫ
, Φ is a contraction. Therefore Φ

has a fixed point and there exists nǫ ∈ A a solution to the following equation

{

∂tnǫ − ǫ△nǫ = nǫ

ǫ
R̄(x, I(t)), x ∈ R, 0 ≤ t ≤ T,

nǫ(t = 0) = n0
ǫ .

I(t) =

∫

Rd

ψ(x)nǫ(t, x)dx,

With the same arguments as A.2 we prove that Im
2 < I(t) < 2IM and thus nǫ is a solution to

equations (1)-(2) for t ∈ [0, T ]. We fix T small enough such that e
K2T

ǫ (e
K2T

ǫ − 1) < K2ψm

8K1ψM IM
. Then

15



we can iterate in time and find a global solution to equations (1)-(2).

Applying the maximum principle to the equation we deduce that nǫ is nonnegative.

A.2 Uniform bounds on Iǫ(t)

We have

dIǫ

dt
=

d

dt

∫

Rd

ψ(x)nǫ(t, x)dx = ǫ

∫

Rd

ψ(x)△nǫ(t, x)dx+
1

ǫ

∫

Rd

ψ(x)nǫ(t, x)R(x, Iǫ(t))dx.

We define ψL = χL · ψ ∈ W∞
2,c(R

d), where χL is a smooth function with a compact support such
that χL|B(0,L) ≡ 1, χL|R\B(0,2L) ≡ 0. Then by integration by parts we find

∫

Rd

ψL(x)△nǫ(t, x)dx =

∫

Rd

△ψL(x)nǫ(t, x)dx.

As L→ ∞, ψL converges to ψ in W 2,∞(Rd). Therefore we obtain

lim
L→∞

∫

Rd

△ψL(x)nǫdx =

∫

Rd

△ψ(x)nǫdx,

lim
L→∞

∫

Rd

ψL(x)△nǫ(t, x)dx =

∫

Rd

ψ(x)△nǫ(t, x)dx.

From these calculations we conclude

dIǫ

dt
= ǫ

∫

Rd

△ψ(x)nǫ(t, x)dx+
1

ǫ

∫

Rd

ψ(x)nǫ(t, x)R(x, Iǫ(t))dx.

It follows that

−ǫ C1

ψm
Iǫ +

1

ǫ
Iǫ min
x∈Rd

R(x, Iǫ) ≤
dIǫ

dt
≤ ǫ

C1

ψm
Iǫ +

1

ǫ
Iǫ max
x∈Rd

R(x, Iǫ).

Let C = C1K1
ψm

. As soon as Iǫ overpasses IM +Cǫ2, we have R(x, Iǫ) < −Cǫ2

K1
= −ǫ2 C1

ψm
and thus dIǫ

dt

becomes negative. Similarly, as soon as Iǫ becomes less than Im − Cǫ2, dIǫ
dt

becomes positive. Thus
(18) is proved.

B A locally uniform BV bound on Iǫ for equations (3)-(4)

In this appendix we prove Theorem 2.4. We first integrate (3) over R
d to obtain

d

dt
Iǫ(t) =

1

ǫ

∫

nǫ(t, x)
(

R (x, Iǫ(t)) + b (x, Iǫ(t))
)

dx.

Define Jǫ(t) = d
dt
Iǫ(t). We differentiate Jǫ and we obtain
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d

dt
Jǫ(t) =

1

ǫ
Jǫ(t)

∫

nǫ(t, x)
∂(R+ b)

∂I
(x, Iǫ(t))dx

+
1

ǫ2

∫

(

R(x, Iǫ) + b(x, Iǫ)
)[

nǫ(t, x)R(x, Iǫ) +

∫

Kǫ(y − x)b(y, Iǫ)nǫ(t, y)dy
]

dx.

We rewrite this equality in the following form

d

dt
Jǫ(t) =

1

ǫ
Jǫ(t)

∫

nǫ(t, x)
∂(R+ b)

∂I
(x, Iǫ(t))dx+

1

ǫ2

∫

nǫ(t, x)
(

R(x, I) + b(x, I)
)2
dx

+
1

ǫ2

∫ ∫

Kǫ(y − x)
(

R(x, I) −R(y, I)
)

b(y, Iǫ)nǫ(t, y)dydx

+
1

ǫ2

∫ ∫

Kǫ(y − x)
(

b(x, I) − b(y, I)
)

b(y, Iǫ)nǫ(t, y)dydx.

It follows that

d

dt
Jǫ(t) ≥

1

ǫ
Jǫ(t)

∫

nǫ(t, x)
∂(R+ b)

∂I
(x, Iǫ(t))dx+

1

ǫ2

∫

nǫ(t, x)
(

R(x, I) + b(x, I)
)2
dx

− K2 + bM L1

ǫ

∫ ∫

K(z)|z|b(x+ ǫz, Iǫ)nǫ(t, x+ ǫz)dzdx

≥ 1

ǫ
Jǫ(t)

∫

nǫ(t, x)
∂(R+ b)

∂I
(x, Iǫ(t))dx+

1

ǫ2

∫

nǫ(t, x)
(

R(x, I) + b(x, I)
)2
dx− C1

ǫ
,

where C1 is a positive constant. Consequently, using (13) we obtain

d

dt
(Jǫ(t))− ≤ C1

ǫ
− C2

ǫ
(Jǫ(t))−.

From this inequality we deduce

(Jǫ(t))− ≤ C1

C2
+ (Jǫ(0))−e

−
C1t

ǫ .

With similar arguments we obtain

(Jǫ(t))+ ≥ −C
′
1

C ′
2

+ (Jǫ(0))+e
−

C′
1t

ǫ .

Thus (22) is proved. Finally, we deduce the locally uniform BV bound (23)

∫ T

0
| d
dt
Iǫ(t)|dt =

∫ T

0

d

dt
Iǫ(t)dt+ 2

∫ T

0
(
d

dt
Iǫ(t))−dt

≤ IM − Im + 2C ′T +O(1).
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C Lipschitz bounds for equations (3)-(4)

Here we prove that uǫ are locally uniformly Lipschitz without assuming that the latter are differn-
tiable. The proof follows the same ideas as in section 4.2.

Let c = 2L1bM
bm

. From (34) we have

∂t
(

uǫ(t, x+ h) − uǫ(t, x) + ch
(

2uǫ(t, x+ h) − uǫ(t, x)
)

− (1 + 2ch)R(x+ h, Iǫ) + (1 + ch)R(x, Iǫ)

=

∫

K(z)b(x+ h+ ǫz, Iǫ)e
uǫ(t,x+h+ǫz)−uǫ(t,x+h)

ǫ dz −
∫

K(z)b(x+ ǫz, Iǫ)e
uǫ(t,x+ǫz)−uǫ(t,x)

ǫ dz

+ ch
(

∫

K(z)2b(x+ h+ ǫz, Iǫ)e
uǫ(t,x+h+ǫz)−uǫ(t,x+h)

ǫ dz −
∫

K(z)b(x+ ǫz, Iǫ)e
uǫ(t,x+ǫz)−uǫ(t,x)

ǫ dz
)

Define α = uǫ(t,x+z)−uǫ(t,x)
ǫ

, β = uǫ(t,x+h+z)−uǫ(t,x+h)
ǫ

, ∆(t, x) = 2uǫ(t, x+h)−uǫ(t, x) and wǫ(t, x) =
uǫ(t,x+h)−uǫ(t,x)

h
+ c∆(t, x). Using the convexity inequality

eβ ≤ eα + eβ(β − α),

we deduce

h∂twǫ(t, x) − (1 + 2ch)R(x+ h, Iǫ) + (1 + ch)R(x, Iǫ)

≤
∫

K(z)b(x+ h+ ǫz, Iǫ)
(

eα + eβ(β − α)
)

dz −
∫

K(z)b(x+ ǫz, Iǫ)e
αdz

+ ch
(

∫

2K(z)b(x+ h+ ǫz, Iǫ)e
βdz −

∫

K(z)b(x+ ǫz, Iǫ)e
αdz

)

≤
∫

K(z)
(

b(x+ h+ ǫz, Iǫ) − b(x+ ǫz, Iǫ)
)

eαdz

+

∫

K(z)b(x+ h+ ǫz, Iǫ)e
β
(

β − α+ ch
∆(t, x+ ǫz) −∆(t, x)

ǫ

)

dz

+ ch

∫

K(z)b(x+ h+ ǫz, Iǫ)e
β(2 − 2β + α)dz − ch

∫

K(z)b(x+ ǫz, Iǫ)e
αdz.

From assumptions (8) and (11) it follows that

∂twǫ(t, x) ≤
∫

K(z)b(x+ h+ ǫz, Iǫ)e
βwǫ(t, x+ ǫz) − wǫ(t, x)

ǫ
dz

+K2 + 3cK2 +

∫

K(z)
(

cbMe
β(2 − 2β + α) + (L1bM − cbm)eα

)

dz.

Notice that

cbMe
β(2 − 2β + α) + (L1bM − cbm)eα = cbMe

β(2 − 2β + α) − L1bMe
α,

is bounded from above. Indeed if we first maximize the latter with respect to β and then with respect
to α we obtain
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cbMe
β(2 − 2β + α) − L1bMe

α < 2cbMe
α
2 − L1bMe

α <
bMc

2

L1
.

We deduce

∂twǫ(t, x) ≤
∫

K(z)b(x+ h+ ǫz, Iǫ)e
βwǫ(t, x+ ǫz) − wǫ(t, x)

ǫ
dz +G,

where G is a constant. Therefore by the maximum principle, (35) and (36) we have

wǫ(t, x) ≤ Gt+ ‖ ∇u0
ǫ ‖L∞ −2cA|x+ h| + 2cB − cu0

ǫ (x = 0) + c ‖ ∇u0
ǫ ‖L∞ |x|.

Using again (35) and (36) we conclude that

uǫ(t, x+ h) − uǫ(t, x)

h
≤ (G+ 2cK2)t+ c

(

−A+ ‖ ∇u0
ǫ ‖L∞

)(

|x| + 2|x+ h|
)

(42)

+ 3cB+ ‖ ∇u0
ǫ ‖L∞ −3c inf u0

ǫ (x = 0).
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[5] G. Barles, E. Chasseigne, and C. Imbert. Hölder continuity of solutions of second-order non-linear
elliptic integro-differential equations. http://hal.archives-ouvertes.fr/hal-00179690/fr/, 2007.

[6] G. Barles, L. C. Evans, and P.E. Souganidis. Wavefront propagation for reaction diffusion systems
of PDE. Duke Math. J. 61, pages 835–858, 1990.

[7] G. Barles and B. Perthame. Concentrations and constrained Hamilton-Jacobi equations arising
in adaptive dynamics. In Recent Developements in Nonlinear Partial Differential Equations, D.
Danielli editor. Contemp. Math. 439, pages 57–68, 2007.

[8] G. Barles and B. Perthame. Dirac concentrations in Lotka-Volterra parabolic PDEs. Indiana
Univ. Math. J. 57 (7), pages 3275–3301, 2008.

[9] G. Barles and P.E. Souganidis. A remark on the asymptotic behavior of the solution of the KPP
equation. C. R. Acad. Sci. Paris Sér. I Math. 319, No.7, pages 679–684, 1994.

[10] G. Barles and P.E. Souganidis. Front propagation for reaction-diffusion equations arising in
combustion theory. Asymptotic Analysis 14, pages 277–292, 1997.

19
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