Growth of Sobolev norms of solutions of linear Schrödinger equations on some compact manifolds - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2009

Growth of Sobolev norms of solutions of linear Schrödinger equations on some compact manifolds

Résumé

We give a new proof of a theorem of Bourgain, asserting that solutions of linear Schrödinger equations on the torus, with smooth time dependent potential, have Sobolev norms growing at most like $t^\epsilon$ when $t\to +\infty$, for any $\epsilon>0$. Our proof extends to Schrödinger equations on other examples of compact riemannian manifolds.
Fichier principal
Vignette du fichier
article.pdf (424.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00389543 , version 1 (28-05-2009)
hal-00389543 , version 2 (07-01-2010)

Identifiants

  • HAL Id : hal-00389543 , version 2

Citer

Jean-Marc Delort. Growth of Sobolev norms of solutions of linear Schrödinger equations on some compact manifolds. 2009. ⟨hal-00389543v2⟩
177 Consultations
423 Téléchargements

Partager

More