Genetic Algorithms for a Supply Management Problem : MIP-Recombination vs Greedy Decoder
Résumé
Two variants of genetic algorithm (GA) for solving the Supply Management Problem with Lower-Bounded Demands (SMPLD) are proposed and experimentally tested. The SMPLD problem consists in planning the shipments from a set of suppliers to a set of customers minimizing the total cost, given lower and upper bounds on shipment sizes, lower-bounded consumption and linear costs for opened deliveries. The first variant of GA uses the standard binary representation of solutions and a new recombination operator based on the mixed integer programming (MIP) techniques. The second GA is based on the permutation representation and a greedy decoder. Our experiments indicate that the GA with MIP-recombination compares favorably to the other GA and to the MIP-solver CPLEX 9.0 in terms of cost of obtained solutions. The GA based on greedy decoder is shown to be the most robust in finding feasible solutions.